New tests for safer reactors

Operating a nuclear reactor causes progressive microstructural changes in the alloys used in cladding, and that can hurt the materials’ integrity.

04/05/2012


ISS SourceOperating a nuclear reactor causes progressive microstructural changes in the alloys used in cladding, and that can hurt the materials’ integrity. However, present-day methods of evaluating materials can take decades.

That is why Sandia National Laboratories is using its Ion Beam Laboratory (IBL) to study how to rapidly evaluate tougher advanced materials needed to build the next generation of nuclear reactors and extend the lives of current reactors.

Reactor operators need advanced cladding materials, which are the alloys that create the outer layer of nuclear fuel rods to keep them separate from the cooling fluid. Better alloys will be less likely to deteriorate from exposure to everything from coolant fluids to radiation damage.

The IBL, which replaced an earlier facility dating from the 1970s, has been in operation for about a year and is doing in situ ion irradiation experiments, potentially shaving years off testing. The ion beams use various refractory elements to simulate different types of damage and thus predict the lifetimes of advanced reactor claddings.

Researchers, trying to understand the changes as a function of radiation dose, inserted a beamline from the tandem accelerator, the IBL’s largest, into a transmission electron microscope (TEM). This allowed them to do in situ ion irradiation experiments at the nanoscale and record results rapidly and in real time. Sandia’s lab is one of two facilities in the U.S. and one of only about 10 in the world that can do this, said Khalid Hattar, a materials scientist at Sandia.

“The idea is to come up with new ways to make different alloy compositions and different materials for next-generation reactors and to understand the materials used in the current-generation reactors,” he said. “Then we can find ways of doing a combination of TEM characterization as well as small-scale mechanical property testing in this rapid testing scenario to screen these materials and see which ones are the most suitable.”

Better understanding of cladding materials could help improve reactor efficiency.

Hattar and his team are using the IBL’s capabilities to try to gain a fundamental understanding of how the materials evolve in extreme environments at the nanoscale. They hope that understanding can then relate to events on the macroscale.

Along those lines, take something familiar like rust on a little red wagon.

“If you look at rust, it’s nonuniform,” Hattar said. “So the location where that first rust starts to occur must be related to some heterogeneous aspect of the microstructure. If we can really understand on the nanoscale what causes it, that initiating factor, then we can prevent the initiation, and without the initiation, you’ll never have that rust formation.”

The team developed a system for testing cladding materials that Hattar believes can work in experiments under extreme conditions to simulate real-life environments. Researchers can work with temperatures up to 2,192 F and pressure up to one atmosphere as well as ion irradiation to gain basic understanding of radiation damage.

A recently completed Laboratory Directed Research and Development (LDRD) program worked with a variety of samples, everything from high-purity, single-crystal copper to materials used in today’s reactors. The team found under the right conditions, a combinatorial approach can work with new alloy compositions produced in-house, Hattar said.

The LDRD project demonstrated a fundamental physics simulation of what’s happening to the material. In the next step, Hattar suggested Idaho National Laboratory expose selected materials to neutrons and then try them out in a real reactor. Since the IBL can run experiments in as little as a day, researchers aim to pinpoint the best material so the Idaho lab, whose tests take much longer, won’t waste time testing poorer materials, he said.

In one experiment, the team examined the composition of and effects of radiation on an alloy considered for the next generation of reactors, seeking the best composition for different radiation exposures.

“Really understanding how the microstructure evolves lets us know a lot about how the material will perform,” Hattar said. “So if we can rapidly determine how the microstructure evolves and understand the mechanisms that it evolves by, we could gain a lot of insight into what happens in the material.”



Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
September 2018
2018 Engineering Leaders under 40, Women in Engineering, Six ways to reduce waste in manufacturing, and Four robot implementation challenges.
July/Aug
GAMS preview, 2018 Mid-Year Report, EAM and Safety
June 2018
2018 Lubrication Guide, Motor and maintenance management, Control system migration
August 2018
SCADA standardization, capital expenditures, data-driven drilling and execution
June 2018
Machine learning, produced water benefits, programming cavity pumps
April 2018
ROVs, rigs, and the real time; wellsite valve manifolds; AI on a chip; analytics use for pipelines
Spring 2018
Burners for heat-treating furnaces, CHP, dryers, gas humidification, and more
August 2018
Choosing an automation controller, Lean manufacturing
September 2018
Effective process analytics; Four reasons why LTE networks are not IIoT ready

Annual Salary Survey

After two years of economic concerns, manufacturing leaders once again have homed in on the single biggest issue facing their operations:

It's the workers—or more specifically, the lack of workers.

The 2017 Plant Engineering Salary Survey looks at not just what plant managers make, but what they think. As they look across their plants today, plant managers say they don’t have the operational depth to take on the new technologies and new challenges of global manufacturing.

Read more: 2017 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Material Handling
This digital report explains how everything from conveyors and robots to automatic picking systems and digital orders have evolved to keep pace with the speed of change in the supply chain.
Electrical Safety Update
This digital report explains how plant engineers need to take greater care when it comes to electrical safety incidents on the plant floor.
IIoT: Machines, Equipment, & Asset Management
Articles in this digital report highlight technologies that enable Industrial Internet of Things, IIoT-related products and strategies.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
Design of Safe and Reliable Hydraulic Systems for Subsea Applications
This eGuide explains how the operation of hydraulic systems for subsea applications requires the user to consider additional aspects because of the unique conditions that apply to the setting
click me