New approaches for remote I/O installations



Each of the three traditional types of marshalling has distinct advantages and disadvantages. The half-knit approach is useful in brownfield projects or where RIEs are used. It is also useful in situations where marshalling is done on one side of a cabinet and the I/O terminals are on the other side. However, if using separate marshalling and system cabinets and conducting FAT offsite, half-knit marshalling is a less attractive option.

Fan-out marshalling is useful when system cables or separate marshalling and system cabinets are specified, when marshalling cabinets are required on site well in advance of system cabinets, or the exact field cable details are not known during the design. This type of marshalling is more flexible and reduces the on-site construction schedule compared to half-knit, but is more challenging from an overall lifecycle perspective.

Cross-wire marshalling offers more flexible scheduling, delivery, and FAT options, while reducing schedule risk. It also comes with better lifecycle benefits than half-knit or fan-out marshalling. This does come with an increased initial cost, though.

Remote I/O with universal channel technology

As noted earlier, all the marshalling paradigms above share the same end goal: Connect field devices to the control system. They all start with the same basic assumptions: Instrumentation is located in the field, with field wiring being collected at junction boxes, which are brought into the marshalling cabinets, with home run cables connected to cabinets of I/O modules at some central location. The only real difference here is how the multi-core cables are treated in the marshalling cabinets and how they are connected to the control system.

Traditional wiring practices place the final I/O module close to the DCS, which means the longest path to any individual field device. Courtesy: Honeywell Process Solutions

More modern remote I/O practices challenge the assumption or requirement that I/O modules are kept in some central location. Moving I/O modules out into the field and closer to process instruments can eliminate the need for multi-core cables and marshalling cabinets, greatly simplifying the field-to-control room architecture. There are several benefits in using this remote I/O approach, which include reducing cost, improving the overall project schedule, and minimizing risk:

  • Configurable channel remote I/O can reduce or eliminate marshalling. Since field signals can be landed directly on I/O terminals, the need for marshalling is eliminated. This has many benefits, including reductions in material costs, such as cabinets, conduits, home run cables, cable trays, and supports. It also reduces installed weight (important in floating production facilities), project labor costs, commissioning costs, and documentation costs.
  • The overall system footprint in the central control room is reduced because the I/O is located directly at the process. The only cable runs to the central control room are now the I/O communication cables.
  • Overall system flexibility is increased as spare channels are better utilized with more local options to I/O instead of being forced to wire back to a centralized location.
  • Fast-track projects are easier to accommodate as the system can be tested and shipped prior to completion of field designs.
  • Project execution efficiency is increased by standardizing supply chain requirements.

Many of these same benefits also apply to configurable universal channel technology, which allows for key modifications after control systems are commissioned and online. This approach drives on-site delivery schedules, since system engineering can be completed without impact from external design dependencies.

Configurable universal channel technology also liberates safety I/O, process I/O, and control cabinets from channel-type dependency. Universal I/O modules for both control and safety systems enable common design paradigms across an integrated control and safety system (ICSS). Any signal type can be connected to any channel without the need for additional hardware or interfacing modules. It also eliminates the need for custom hardware alignment with different I/O types. Cabinets can now be standardized, since any standard field signal can be connected to any I/O channel.

Moving I/O modules out into the field and closer to process instruments can eliminate the need for multi-core cables and marshalling cabinets, greatly simplifying the field-to-control room architecture. Courtesy: Honeywell Process Solutions

Because this approach can accept any signal type (analog, digital, input, or output), late arriving changes in the instrumentation package, as is commonplace in automation projects, can be accommodated through software configuration versus having to change the hardware. With universal I/O for both safety and process, project teams need only worry about I/O count and not the mixture of device types.

The configurable channel approach can not only reduce or even eliminate the need for marshalling but, most importantly, also allows immediate remote configuration. Theoretically, this would simplify engineering and configuration during the design stage of a project, and can save up to 33% of the installation costs. Late configuration changes can be done through remote access rather than having someone manipulating hardware in the field, so they can be handled in minutes rather than days.

Build in your shop, not the field

It is not difficult to imagine that cabinet requirements are also simplified by this approach. Often, the documentation required for design and fabrication of cabinets is not finalized in time to meet construction schedules on projects. This means that a lot of the cabinet assembly, testing, and configuration is done in the field, where costs are higher and efficient documentation is more difficult.

Universal cabinets are simply standard cabinets that are equipped with a configurable input capability. The resulting flexibility supports easy changes, additions, and modifications at any time without rewiring. The effort needed to obtain additional cabinets is minimized because the capabilities and resources of each cabinet can be determined in advance. Since there are no marshalling cabinets, the project ends up with an overall decreased footprint with lower installation and maintenance costs. Acceptance test schedules also are improved due to efficiencies in addressing late changes in I/O configuration. There are numerous other potential benefits:

  • Universal cabinets can improve the project schedule by reducing the amount of custom engineering and documentation compared to custom designing each cabinet. Having universal cabinets enables a faster delivery that is based only on I/O count, not I/O type distribution.
  • In addition to improved project schedules, universal cabinets can enable even faster and more cost-effective checkout.
  • Adding room for spare devices is much simpler. Since every I/O channel can be configured as any point type through software configuration only, it is simple to adapt to late wiring changes. Instead of allocating I/O modules of each point type, which may or may not be used, configurable I/O modules are available for multiple point types.
  • The total amount of I/O hardware is reduced. Here are two examples demonstrating a reduction in hardware needs. On a project with 5,000 I/O points, the total number of modules can be cut by as much as 35%. Even a small project can benefit since adding even one device with a different signal type requires adding a new module using traditional methods.
  • For plants where instrument locations are highly distributed, such as a refinery tank farm, universal I/O modules in universal cabinets can be a very cost-effective alternative to long cable runs or additional RIEs.

Configurable channel technology is also useful in system migrations, especially in space constrained control rooms. Universal I/O modules can result in a negative footprint solution, and the module flexibility gives it the ability to adapt to existing field wiring with scalability to add new signals.

Even without mounting universal I/O modules remotely in the field, there are still other benefits. Universal I/O modules can be used in RIEs and equipment rooms to reduce or eliminate the cross-wiring requirements associated with the marshalling strategies discussed earlier.

These new I/O module approaches are particularly well suited for scenarios where the process is highly distributed or is modular. It’s important to remember, though, that each situation is unique, and different plants will have to weigh the benefits and costs of implementing each method. At the very least, these new I/O technologies have widened the number of available options for solving problems that demand advanced functionality with less complex installation. And that’s a major advancement in itself.

Joe Bastone is solution manager, Experion control and I/O, for Honeywell Process Solutions.

Key concepts:

  • Traditional strategies for field wiring are proven, but can be costly and time consuming.
  • New types of modular I/O devices support moving that connection into the field, closer to the devices.
  • Software configurability of modules and individual channels allows for simpler hardware selection. 

Go online:

For more information, visit:

Read more on I/O strategy below:

Make your I/O smarter

<< First < Previous Page 1 Page 2 Next > Last >>

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Pipe fabrication and IIoT; 2017 Product of the Year finalists
The future of electrical safety; Four keys to RPM success; Picking the right weld fume option
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Control room technology innovation; Practical approaches to corrosion protection; Pipeline regulator revises quality programs
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Power system design for high-performance buildings; mitigating arc flash hazards
VFDs improving motion control applications; Powering automation and IIoT wirelessly; Connecting the dots
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me