Networked motor management system improves boiler cleaning system

Burning fossil fuels efficiently and economically is vital for power companies when it comes to meeting the ever-increasing demand for electricity by a growing world economy. The efficiency of a boiler is determined largely by the cleanliness of its heating transfer surfaces. This is why power companies spend increasingly more effort in modernizing their boiler cleaning systems.


Burning fossil fuels efficiently and economically is vital for power companies when it comes to meeting the ever-increasing demand for electricity by a growing world economy. The efficiency of a boiler is determined largely by the cleanliness of its heating transfer surfaces. This is why power companies spend increasingly more effort in modernizing their boiler cleaning systems.

A leading OEM of advanced boiler cleaning systems, Atlanta-based Clyde Bergemann (CB), offers a full range of boiler onload cleaning solutions for every type of boiler — from individual soot blowers, to more advanced sensor controlled, intelligent boiler cleaning systems.

Intelligent boiler cleaning systems have sensors that monitor boiler cleanliness. These sensors provide information that enables CB's control system to decide which soot blower cleans next and where. This intelligent system greatly improves boiler efficiency and minimizes downtime.

Simplified installation and maintenance

When searching for motor management solutions for their boiler cleaning equipment, Jim Noland, controls engineer at Clyde Bergemann, was looking for a distributed I/O solution, where individual hardwiring and conduit running to the sootblowers would not be necessary, and basic soot blower operation could be implemented with a local controller. Rather, a single cable would run from a PLC cabinet, daisy chaining to the other sootblowers that could then operate independently if PLC controls were disrupted. "We were interested in a solution that replaced hardwired circuitry. Instead of custom circuits for every type of blower, it meant we could replace all that wiring with one motor management tool," said Noland.

Having worked with Siemens' contractors for more than 10 years, and having had good experience with Siemens' motor control products, Siemens was short listed among other competing distributed I/O system vendors. When Jim Noland and Sandeep Shah, Director of Technology, took a closer look at the Siemens Simocode pro and realized the vast range of extra features it had, the purchase decision was simple.

The new system's distributed I/O system simplified implementation for Noland and other engineers at Clyde Bergemann. "Instead of maintaining separate circuit designs for each type of blower, we now just program a configuration in the system. The time savings is dramatic," said Noland. There is a different control scheme for each of the different blowers. For example, a blower is programmed to insert, pause for 0.8 seconds and retract. Instead of hardwiring that logic, it can now just be programmed. Any changes to that logic can be made in a matter of seconds instead of a lengthy process involved with hard wiring; there is no interruption to the production. "Not only did we find our desired distributed I/O but we also found one that makes configuration and programming easy. And the system connects seamlessly to Profibus and has a very simple interface," continued Noland.

It was the Profibus interface and its high degree of detail on the performance of the blowers that was the key decision factor in favor of the Simocode pro. While conventional systems only show the cycle time, and whether the system is in run or fault, the Siemens motor management system shows much more. It transmits actual motor current, motor direction, phase status and overload status back to the PLC. "This was a major benefit for us; you can monitor a lot more detail on the motor status than you can on a conventional control system," Shah said. For example, if the current starts to get too high, you can perform proactive preventive maintenance before the blower shuts down.

As with any industrial operating machine, reliability is vital. Most critical systems must be fail-safe. When a soot blower fails, then a part of the boiler cannot be cleaned, and combustion residues are deposited on both the heating surfaces and the heat exchangers, which inhibits heat transfer and therefore reducing the boiler's efficiency. It is vital for Clyde Bergemann to provide a system that is reliable to ensure the boiler remains efficient and the soot deposits are continuously removed.

Safety and reliability

Though Clyde Bergemann knew it wanted a distributed I/O solution, it also knew it could not depend completely on the PLC for safety precautions. "The first question that always arises when distributed I/O interfaces are considered is what happens if the communication cable connection is disrupted. The fact that [this system] will execute its own logic internally really caught my attention as [this solution] allows for local programming and local control. It means we can at least operate manually from the sootblower junction box even if the Profibus cable is cut or disturbed or the controller is not communicating to the device," Shah said.

Another safety and reliability area where this system has an edge over the previous system design is its ability to detect problems with the limit switch. This meant that Clyde Bergemann could actively monitor its soot blowers instead of reacting when one of them would happen to stop suddenly due to a failed limit switch. "Previously, the PLC was not able to monitor the limit switch inputs on the blower. If a limit switch failed, we would not know until the blower had started and its cycle time was exceeded. Now we can monitor blower I/O status and automatically disable a blower if a problem exists," Noland said.

"[This system] puts us a step ahead of the competition because of its extra features and diagnosis capabilities," commented Sandeep Shah.

One final benefit which became apparent after the system was installed was that it had built in integrated motor safety protection. This provides instant disabling of the starter outputs if an overload or fault condition is detected as well as reversing and other integrated protection. The advantage is that protection logic does not have to be handled by the PLC. I/O points are not consumed with monitoring individual overloads. Overload trips can be reset from the HMI. Overload warning and trip configuration allow different programs to be configured based on the severity of the overload. For example, in a typical overload condition, the blower should immediately retract and not trip to prevent the expensive boiler from being damaged. However, for a stalled rotor condition, the starter should not trip to prevent damage to the drive train. This level of configuration is not possible with a standard control system. It would require additional programming or hardwiring.

Noland sums up: "The Simocode pro really exceeded our expectations; it does what it promotes and more. It is simple to program and operates reliably in a harsh environment."

Information provided by Siemens Energy & Automation, Inc., Power Distribution & Controls division, Norcross, GA,

Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2017 Top Plant.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
May 2018
Electrical standards, robots and Lean manufacturing, and how an aluminum packaging plant is helping community growth.
April 2018
2017 Product of the Year winners, retrofitting a press, IMTS and Hannover Messe preview, natural refrigerants, testing steam traps
March 2018
SCCR, 2018 Maintenance study, and VFDs in a washdown environment.
April 2018
ROVs, rigs, and the real time; wellsite valve manifolds; AI on a chip; analytics use for pipelines
February 2018
Focus on power systems, process safety, electrical and power systems, edge computing in the oil & gas industry
December 2017
Product of the Year winners, Pattern recognition, Engineering analytics, Revitalize older pump installations
Spring 2018
Burners for heat-treating furnaces, CHP, dryers, gas humidification, and more
April 2018
Implementing a DCS, stepper motors, intelligent motion control, remote monitoring of irrigation systems
February 2018
Setting internal automation standards

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Maintenance & Safety
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
Industrial Analytics
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
IIoT: Operations & IT
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me