Motor protection delivers reliable, efficient operation

How to make the right choice between a soft starter and a variable frequency drive

04/15/2013


How to make the right choice between a soft starter and a variable frequency drive. Courtesy: EatonMotors often require large amounts of energy when quickly accelerating to full speed. Soft starters and variable frequency drives can both be used to reduce inrush currents and limit torque—protecting your valuable equipment and extending the life of your motor by reducing motor heating caused by frequent starts and stops. Choosing between a soft starter and a variable frequency drive often depends on the application, system requirements, and cost (both for initial start-up and over the lifecycle of the system). 

Extending motor life

A soft starter is a solid-state device that protects ac electric motors from damage caused by sudden influxes of power by limiting the large initial inrush of current associated with motor start-up. They provide a gentle ramp-up to full speed and are used only at start-up (and stop, if equipped). Ramping up the initial voltage to the motor produces this gradual start. Soft starters are also known as reduced voltage soft starters (RVSS). 

Applications

Soft starters are used in applications where:

  • Speed and torque control are required only during start-up (and stop if equipped with soft stop)
  • Reducing large start-up inrush currents associated with a large motor is required
  • The mechanical system requires a gentle start to relieve torque spikes and tension associated with normal start-up (for example, conveyors, belt-driven systems, gears, and so on)
  • Pumps are used to eliminate pressure surges caused in piping systems when fluid changes direction rapidly  

How does a soft starter work? Electrical soft starters temporarily reduce voltage or current input by reducing torque. Some soft starters may use solid-state devices to help control the flow of the current. They can control one to three phases, with three-phase control usually producing better results. 

Figure 1. Soft Starter Schematic. Courtesy: Eaton

Figure 1. Soft Starter Schematic 

Most soft starters use a series of thyristors or silicon controlled rectifiers (SCRs) to reduce the voltage. In the normal Off state, the SCRs restrict current, but in the normal On state, the SCRs allow current. The SCRs are engaged during ramp-up, and bypass contactors are pulled in after maximum speed is achieved. This helps to significantly reduce motor heating.

Soft starters are often the more economical choice for applications that require speed and torque control only during motor start-up. Additionally, they are often the ideal solution for applications where space is a concern, as they usually take up less space than variable frequency drives.

Driving energy efficiency

A variable frequency drive is a motor control device that protects and controls the speed of an ac induction motor. A VFD can control the speed of the motor during the start and stop cycle, as well as throughout the run cycle. 

Applications

VFDs are used in applications where:

  • Complete speed control is required
  • Energy savings is a goal
  • Custom control is needed  

VFDs convert input power to adjustable frequency and voltage source for controlling speed of ac induction motors. The frequency of the power applied to an ac motor determines the motor speed, based on the following equation: 

Speed (rpm) = 120 x Frequency (Hz) x number of motor poles 

For example, a four-pole motor is operating at 60 Hz. These values can be inserted into the formula to calculate the speed:

120 x 60 x 4 = 1800 rpm 

Figure 2. The function of a VFD. Courtesy: Eaton

Figure 2. The function of a VFD

  • ac supply: Comes from the facility power network (typically 480V, 60 Hz ac)
  • Rectifier: Converts network ac power to dc power
  • Filter and dc bus: Work together to smooth the rectified dc power and to provide clean, low ripple dc power to the inverter
  • Inverter: Uses dc power from the dc bus and filter to invert an output that resembles sine wave ac power using a pulse width modulation (PWM) technique.
  • Pulse width modulation: Switches the inverter semiconductors in varying widths and times that, when averaged, create a sine waveform 

Figure 3. Pus Width Modulated Waveform. Courtesy: Eaton

Figure 3. Pus Width Modulated Waveform 


<< First < Previous Page 1 Page 2 Next > Last >>

Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
October 2018
Tools vs. sensors, functional safety, compressor rental, an operational network of maintenance and safety
September 2018
2018 Engineering Leaders under 40, Women in Engineering, Six ways to reduce waste in manufacturing, and Four robot implementation challenges.
July/Aug
GAMS preview, 2018 Mid-Year Report, EAM and Safety
October 2018
2018 Product of the Year; Subsurface data methodologies; Digital twins; Well lifecycle data
August 2018
SCADA standardization, capital expenditures, data-driven drilling and execution
June 2018
Machine learning, produced water benefits, programming cavity pumps
Spring 2018
Burners for heat-treating furnaces, CHP, dryers, gas humidification, and more
October 2018
Complex upgrades for system integrators; Process control safety and compliance
September 2018
Effective process analytics; Four reasons why LTE networks are not IIoT ready

Annual Salary Survey

After two years of economic concerns, manufacturing leaders once again have homed in on the single biggest issue facing their operations:

It's the workers—or more specifically, the lack of workers.

The 2017 Plant Engineering Salary Survey looks at not just what plant managers make, but what they think. As they look across their plants today, plant managers say they don’t have the operational depth to take on the new technologies and new challenges of global manufacturing.

Read more: 2017 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Material Handling
This digital report explains how everything from conveyors and robots to automatic picking systems and digital orders have evolved to keep pace with the speed of change in the supply chain.
Electrical Safety Update
This digital report explains how plant engineers need to take greater care when it comes to electrical safety incidents on the plant floor.
IIoT: Machines, Equipment, & Asset Management
Articles in this digital report highlight technologies that enable Industrial Internet of Things, IIoT-related products and strategies.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
Design of Safe and Reliable Hydraulic Systems for Subsea Applications
This eGuide explains how the operation of hydraulic systems for subsea applications requires the user to consider additional aspects because of the unique conditions that apply to the setting
click me