Larger microturbines make inroads in industrial cogeneration

Microturbines have come a long way. These distant descendants of aviation auxiliary power supply turbines and automotive turbochargers were first developed in the 1990s. From the beginning, they have been recognized as an important technology for on-site electric generation. Beneficial use of the turbine waste heat has always been the key to successful installations.




Microturbines have come a long way. These distant descendants of aviation auxiliary power supply turbines and automotive turbochargers were first developed in the 1990s. From the beginning, they have been recognized as an important technology for on-site electric generation. Beneficial use of the turbine waste heat has always been the key to successful installations. T


he first cogeneration microturbines were in the 25-30 kW size range, followed by later developments of the 60-65 kW size class. In recent years, manufacturers have introduced larger 200-250 kW microturbines, which makes this technology more attractive for commercial and industrial users.


Making Full Use of the Energy

The larger microturbine generators have fuel-to-electricity efficiencies of 25 to 30% — slightly lower than larger utility class gas turbines. However, this doesn't take into account the fact that virtually all microturbine installations are designed to also use the high-temperature turbine exhaust in a wide range of useful applications. This can bring the overall thermal efficiency of the installation up to 75 to 80%, and makes the on-site generation package an attractive energy solution.


Capstone Turbine Corporation is a major supplier of microturbines, offering units in the 30kW, 60kW and 100kW classes, as well as the C200, a new 200kW product that is especially attractive to industrial and large commercial customers. According to Kyra Bonavida, a spokesperson for Capstone, “Companies that have various thermal needs that can be satisfied or assisted by the microturbine waste heat are often interested in microturbine power systems.” She notes, “Mid-sized microturbines are a good source of energy for industrial facilities because they are efficient, clean, low maintenance, and can be easily connected to the utility grid.”


Many Ways to Use Byproduct Heat

Bonavida cites as examples of byproduct heat utilization the production of hot water for food processing and for drying tasks in the furniture industry. Other Capstone installations include process heat in the plastics and plating industries, generation of steam for sterilization and drying operations, and preheating air for use in industrial burners such as found in the metals industry.


Bonavida also points out that hot water or steam can be used for cooling needs. “The waste heat can be run through absorption chillers to provide cooling for facilities such as data centers or other facilities that have refrigeration requirements.” The recently introduced Capstone C200, because of its larger scale, triples the amount of byproduct heat energy from a single unit, making it more attractive for the industrial market. Capstone also offers an engineered package of five C200 units that has an electric capacity of 1MWe, and a proportionately larger heat output.


Can Use Methane Generated On Site

Another way in which microturbines are a good fit for industrial applications is that they can use byproducts from other manufacturing operations to fuel the turbine. As an example, digesters or other processes that produce methane can feed that fuel into the microturbine as a stand-alone fuel or as a supplement to natural gas. Bonavida notes, “For example, wastewater treatment facilities can use the methane byproduct to fuel the microturbine.” This application is already being used by several municipalities.


For industries that have concerns about emissions, the larger microturbines are also attractive. According to Bonavida, the Capstone C200 is CARB certified for emissions. “This makes it extremely easy to get the equipment and site approved and it often does not even require an air permit. The C200 is also UL certified, which makes it easy to get building permits for installing the equipment. The UL certification also makes connecting to the grid a simpler procedure.”


Ingersoll Rand Mid-sized Offering

Another major provider of microturbines in the 200%%MDASSML%%250 size class is Ingersoll Rand. This global firm offers its Model MT250, a 250 kW machine that is well adapted to industrial applications. Andy Freeman from this company provided information on this product at a Technology Marketing Assessment Forum (TMAF) sponsored by the Energy Solutions Center in Pasadena in spring, 2009. In his presentation he noted, “This technology makes sense for companies that have a 24/7 electrical load greater than 250 kW, and a 24/7 need for hot water.”


Freeman pointed out that these units are especially attractive in areas where there are high electric rates. He adds, “In some cases there are also incentives available from the utility for an industrial microturbine installation.” Freeman points out that the maximum use of the byproduct heat is essential for a good microturbine application.


Compact Design Saves Space

The MT250 includes a patented recuperator and an integrated heat recovery system to minimize the amount of floor space needed for the installation. The package is CARB-2007 certified for use in California and features NOx emissions of less than 9 ppm. The unit requires only one planned annual shutdown and the overhaul interval is 40,000 hours, or nearly five years of operation.


Chocolate Plant Chooses Microturbines

An example of a successful industrial installation of microturbines with heat recovery is an installation at Astor Chocolate in Lakewood, New Jersey. In 2006, Astor was looking for an energy solution that would offer high power supply reliability as well as effective heating and cooling. The installation features five Capstone C60 microturbines with integrated heat recovery. The hot water supplements the plant's hot water and space heating requirements, and also feeds a 100-ton absorption chiller for building cooling, including cooling for the finished chocolate products in the warehouse.


According to Astor Chocolate's Plant Engineering Manager, Joe Verschleisser, “We installed these Capstone turbines to enhance our already developed cogeneration design and to go further green with the latest technology.” He explains that the turbines are operated in a load-following capability due to New Jersey's lack of net metering functionality. The company has been pleased with the results of the installation. Verschleisser says, “The Capstone microturbines have paid for themselves and proven to be dependable and reliable.”


Microturbine Cogeneration Makes Sense

If your plant needs reliable cogeneration and has use for the considerable heat output of a mid-sized microturbine, this may be a solution worth investigating. The obvious attraction is the high-efficiency use of natural gas for electric generation, heating and cooling in an installation that makes full use of the energy.




More Info.
Capstone Turbine Corporation
Energy Solutions Center Information on Cogeneration
Ingersoll Rand




The Top Plant program honors outstanding manufacturing facilities in North America. View the 2017 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
SCCR, 2018 Maintenance study, and VFDs in a washdown environment.
Welding ergonomics, 2017 Salary Survey, and surge protection
2017 Top Plant winner, Best practices, Plant Engineering at 70, Top 10 stories of 2017
Product of the Year winners, Pattern recognition, Engineering analytics, Revitalize older pump installations
Control room technology innovation; Practical approaches to corrosion protection; Pipeline regulator revises quality programs
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Setting internal automation standards
Knowing how and when to use parallel generators
PID controllers, Solar-powered SCADA, Using 80 GHz radar sensors

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me