Inside Machines: Fly Me to the Moon

Tiny motion control technology helps with a prototype lunar mechanical tool changer for a robot that could unload moon landers from a spacecraft and then do various science experiments.


NASA Langley Research Center hired Honeybee Robotics Spacecraft Mechanisms Corporation to develop a mechanical tool changer, for the end of what Langley’s Lunar Surface Manipulation System (LSMS) team describes as a robot that could unload landers. After moon landers are unloaded, the robot could do base assembly, then mate with tools to take science experiments.

Lunar crane test bed geometry design. Courtesy: NASA, via NB Corp.

The dexterous, autonomous robot incorporates elements of a crane and tool changer for use in multiple applications on Mars or in outer space for a robotic arm with end effectors.

Making it work

The assignment included a footprint to stay within, along with requirements for load ratings and misalignment allowances.

Lee Carlson, a systems engineer who was part of the Honeybee team, described the project: “The crane might be sitting on the lander deck or on the lunar surface and would be driven from quite a distance away from the tool to be mated to; this required designing for large misalignment allowances … this was our first design challenge. The end of the crane and target tool could be misaligned by as much as a couple inches in any direction with up to 20 degrees angular misalignment when attempting a mate.”

Among other considerations, Carlson said, “The tool changer had to be capable of carrying around 1000 lb so (the tool changer) had to be very robust. Also, since this was a lunar project, it has to be tolerant to moon dust. These two design criteria required special seals to protect large roller bearings. If this design was for space, it becomes considerably simpler. All of the loads would be reduced and dust is no longer an issue. But the moon is a very harsh environment, and lunar dust is a major concern when designing for missions there.”

Additional requirements

The original assignment called for mechanical tools without power. The crane would do all the work. Tools would include a forklift attachment, a shovel or scoop for acquiring surface samples or digging, or even a bucket for lifting human passengers.

NASA added capability to attach an electronic or electromechanical tool to the end of the crane, adding an electrical connection to the original mechanical link, so the tool changer might accommodate “cameras or tools with cameras on them or even a light jackhammer,” Carlson said. There wasn’t space for an electrical connector because it was not a part of the original contract, and the budget did not allow for starting from scratch.

10 square inches

NASA did not want to redesign the tool changer, which gave Carlson 2.5 x 4 in. of free space to incorporate the male side of the new autonomous connector. The connector has to mate itself to a female connector mounted on the tool, calling for the smallest design Carlson had ever done.

Honeybee designed the male side on the crane and female side, on each tool, which had to be inexpensive and easy to create.

The male connector has all the moving parts. It is cylindrical and populated with eleven 1/16-in. dia. aluminum pins, plated with gold over nickel, and configured in a standard MIL/Spec pattern. The connector rides on compact slides—miniature guides. The top faces of the two glides are facing each other, and Honeybee’s components are in between the two glides, supporting this connector and reducing the moment loads on the slides.

Precise movements

Six slides were used within the space, three on each side. Carlson said, “The slides ride on each other in the manner of drawer slides that are stacked to extend the distance they can open a drawer. Our configuration achieves an extension of the movement equal, approximately, to the length of three slides. So instead of a half-inch stroke, we could get an inch and a half stroke—within a very, very small footprint. Low mass, low load, and very low profile were all required for this application.”

Carlson said that the guides were some of the smallest slides he could find, made of stainless steel, and were from a supplier he had worked with previously. To increase lunar dust tolerance, the electrical connector assembly will be sealed in a bellows to protect it from the harsh lunar environment. The guides chosen have a standard radial clearance that is twice as accurate as other standard miniature guides.

Design considerations

Had Honeybee taken a different design route, there might have been a deformation of the guide block to consider. Mounting the connector on one rail on an arm that extended to the side would have caused block deformation, reducing accuracy. The version used is stiffer with optimized machining on the guide’s top-mounting surface that attaches to the table. This withstands the extra moment load that could have caused some clearance due to deformation.

Waiting for the moon

With moon exploration on hold, Honeybee is waiting to complete LSMS assembly and testing.

Miniature guide technology notes

The connector rides on compact slides—miniature guides made by NB Corporation, offering the widest selection of miniature linear slides. They are called SEBS.

Most manufacturers do not claim that their preload eliminates all clearance. Their standards are plus to minus, which allows gaps, or clearance, to exist. Minus means there is some preload so there’s no gap. NB designs are from zero to minus as a standard; removing clearance adds accuracy. A negative clearance means the ball is larger than the space, adding more pressure and greater rigidity. This increased rigidity is desirable in high-precision applications. NB fabrication requires more control in the assembly and manufacturing process.

There are instances where no preload is desired, where one might want to remove all friction and trade off accuracy and rigidity for minimal friction, but not for this application.

NB SEB-AD version is stiffer with optimized machining on the top-mounting surface of the guide block that attaches to the table, which withstands the extra moment load that could have caused some clearance due to deformation.

For the smallest applications with lesser loads, an extra compact block, SEBS-BS (size 2), is shorter than the standard length block and has two holes instead of four. Either retained-ball (whose elements allow for easier handling since the guide block may be removed from rail without ball loss) or low-cost non-retained-ball lines are available.

SER is a miniature guide with crossed-roller bearings (with more contact areas than ball bearings) providing the greatest rigidity. SER comes in stainless steel, with nonretained rollers, and in the same block sizes and configurations as the SEBS ball bearing miniature guides.

In recent tests executed by Newmark Systems Inc. of Rancho Santa Margarita, Calif., due to their friction-free travel, NB’s miniature guides have proven to not wear after 1.5 years of constant travel.

Honeybee developed harsh-environment, mission-critical end-effectors for more than 25 years, including equipment for other space missions.



- Larry Hansen is general sales manager, NB Corporation of America. Edited by Mark T. Hoske, CFE Media, Control Engineering,


The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Pipe fabrication and IIoT; 2017 Product of the Year finalists
The future of electrical safety; Four keys to RPM success; Picking the right weld fume option
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Control room technology innovation; Practical approaches to corrosion protection; Pipeline regulator revises quality programs
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Power system design for high-performance buildings; mitigating arc flash hazards
VFDs improving motion control applications; Powering automation and IIoT wirelessly; Connecting the dots
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me