Industrial PCs ease integration

Robotic integration: Hardware and software advancements, such as multi-core processors and industrial Ethernet fieldbus technology, are enabling engineers to integrate cost-effective robotic solutions with motion control, communications, and human-machine interfaces.

12/25/2013


This robot arm used in a welding application implemented by Houston-based ARC Specialties uses a CX1010 Embedded PC and TwinCAT NC PTP software from Beckhoff Automation to cost-effectively control a Fanuc ArcMate M710IC-50 robot and nearby machine, positiAdding open-control hardware and software to the convergence of well-known controls principles makes it possible to create machine designs that feature seamlessly integrated robots. This results in game-changing advantages for machine builders and manufacturers and the ability to integrate robot technology into more applications, including those that are traditionally among the most cost-sensitive.

The cost-saving benefits that make this possible include: reduced wiring, network and software platforms that are shared with the overall machine automation system, and a significantly reduced machine footprint. This has led to higher performance mechatronic and robotic solutions, including product packaging with variable product flow and complex material handling lines.

Previously, most machine control architectures that integrated robotics used independent robot controllers to implement the kinematics. These typically required separate programming from the general machine control and the specific engineered communication infrastructure, with special profiles for each application.

Beckhoff Automation demonstrated motion and robotic control capabilities at Pack Expo 2013 in Las Vegas, with one CX2020 Embedded PC running kinematics for a Codian Robotics delta robot as well as three additional axes of servos that were coordinated withToday, however, robotics and other motion control can be operated by industrial PCs (IPCs) and programmed in the same software environment. Modern multi-core processors, which are now standard in many IPCs, are able to control all automated elements on a machine, especially where intense robot dexterity and speed are required by the application. Only minimum CPU processing power is required for robotic kinematics, leaving ample reserves for other functions, such as measurement, condition monitoring, vision systems, rich multimedia for documentation, and training and tutorial materials. In fact, it is possible to easily run two or more delta robots on the same controller and to coordinate the motion between multiple robots and auxiliary axes by electronic gearing, CAM tables, G-code, and most other standard motion technology.

Another enabling technology that brings robot equipment to a wide range of applications is the broad acceptance of industrial Ethernet fieldbus technology, such as EtherCAT. This network has become a globally accepted standard in the realm of robotics that allows faster integration of kinematic solutions into machinery. In addition to microsecond-level communication speeds and high precision, EtherCAT also brings diagnostics functionality without having to add layers in hardware or software. For example, EtherCAT can automatically detect system line breaks enabling faster problem resolution while running network communications through a flexible data processing mechanism known as “processing on the fly.” All EtherCAT devices on a network can receive and process data independently, without requiring a higher level device to poll the network.

- Matt Lecheler is a motion specialist at Beckhoff Automation; edited by Jordan Schultz, associate content manager, CFE Media, Control Engineering and Plant Engineering, jschultz@cfemedia.com.

ONLINE

See link to related article on a platform integrating PLC, motion control, and robotics below.

For more information on Beckhoff’s robotics software: www.beckhoffautomation.com/kinematics     

Key concepts

  • Open-control hardware and software have made implementing cost-effective robotic solutions easier.

Consider this

  • Robotics integration leads to cost savings and, in turn, higher performance robotics.
  • Powerful industrial PCs now control robotics and other functions simultaneously.
  • Advanced networks increase robotic effectiveness through high-speed communication and diagnostics.


The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Pipe fabrication and IIoT; 2017 Product of the Year finalists
The future of electrical safety; Four keys to RPM success; Picking the right weld fume option
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Control room technology innovation; Practical approaches to corrosion protection; Pipeline regulator revises quality programs
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Power system design for high-performance buildings; mitigating arc flash hazards
VFDs improving motion control applications; Powering automation and IIoT wirelessly; Connecting the dots
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me