How hydraulic machines work

In any plant, you see hydraulically operated machinery such as actuators, punch presses or forklifts. In this edition of "How Stuff Works," Marshall Brain explains how.

07/06/2001


Plant Engineering - January 2001

MARSHALL BRAIN'S HOW STUFF WORKS

How Hydraulic Machines Work

Staff

Adapted from HowStuffWorks.com

In any plant, you see hydraulically operated machinery in the form of actuators, punch presses, forklifts, and injection molding machines. Hydraulics operate the control surfaces on any large airplane. You see hydraulics at car service centers lifting cars so that mechanics can work underneath them, and many elevators are hydraulically operated using the same technique. Even the brakes in your car use hydraulics!

The basic idea
The basic idea behind any hydraulic system is very simple: Force that is applied at one point is transmitted to another point using an incompressible fluid. The fluid is almost always oil of some sort. The force is almost always multiplied in the process. The picture below shows the simplest possible hydraulic system.


In this drawing, two pistons fit into two cylinders filled with oil and are connected to one another with an oil-filled pipe. If you apply a downward force to one piston (the left one in this drawing), then the force is transmitted to the second piston through the oil in the pipe. Since oil is incompressible, the efficiency is very good—almost all of the applied force appears at the second piston. The great thing about hydraulic systems is that the pipe connecting the two cylinders can be any length and shape, allowing it to snake through all sorts of things separating the two pistons. The pipe can also be split, so that one master cylinder can drive more than one slave cylinder if desired.

The neat thing about hydraulic systems is that it is very easy to add force multiplication (or division) to the system. Trading force for distance is very common in mechanical systems. The same is true for hydraulic systems. In a hydraulic system, all that you do is change the size of one piston and cylinder relative to the other.


To determine the multiplication factor, start by looking at the size of the pistons. Assume that the piston on the left is 2 in. in diameter, while the piston on the right is 6 in. in diameter. The area of the two pistons is pr2. The area of the left piston is therefore 3.14 sq in., while the area of the piston on the right is 28.26 sq in. The piston on the right is nine times larger than the piston on the left. What that means is that any force applied to the left piston will appear nine times greater on the right piston. So if you apply a 100-lb downward force to the left piston, a 900-lb upward force will appear on the right. The only catch is that you will have to move the left piston 9 in. to raise the right hand piston 1 in.

The brakes in your car are a good example of a basic piston-driven hydraulic system. When you press the brake pedal in your car, it is pushing on the piston in the brake's master cylinder. Four slave pistons, one at each wheel, actuate to press the brake pads against the brake rotor to stop the car.

Many hydraulic systems, hydraulic cylinders, and pistons are connected through valves to a pump supplying high-pressure oil. For example, a hydraulic metal-cutting punch press has valves that direct the oil to either side of the main hydraulic ram. When an operator presses the button to lower the ram, oil is directed through the valve to the top of the ram, forcing it downward, pressing the cutter through the metal and into the die.

When the ram reaches a predetermined limit of travel, it actuates a switch, which effectively changes the position of the valve. This directs the oil to the bottom side of the ram, forcing it upward to the home position.

 

Visit howstuffworks.com for fascinating information on thousands of topics.





Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
October 2018
Tools vs. sensors, functional safety, compressor rental, an operational network of maintenance and safety
September 2018
2018 Engineering Leaders under 40, Women in Engineering, Six ways to reduce waste in manufacturing, and Four robot implementation challenges.
July/Aug
GAMS preview, 2018 Mid-Year Report, EAM and Safety
October 2018
2018 Product of the Year; Subsurface data methodologies; Digital twins; Well lifecycle data
August 2018
SCADA standardization, capital expenditures, data-driven drilling and execution
June 2018
Machine learning, produced water benefits, programming cavity pumps
Spring 2018
Burners for heat-treating furnaces, CHP, dryers, gas humidification, and more
October 2018
Complex upgrades for system integrators; Process control safety and compliance
September 2018
Effective process analytics; Four reasons why LTE networks are not IIoT ready

Annual Salary Survey

After two years of economic concerns, manufacturing leaders once again have homed in on the single biggest issue facing their operations:

It's the workers—or more specifically, the lack of workers.

The 2017 Plant Engineering Salary Survey looks at not just what plant managers make, but what they think. As they look across their plants today, plant managers say they don’t have the operational depth to take on the new technologies and new challenges of global manufacturing.

Read more: 2017 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Material Handling
This digital report explains how everything from conveyors and robots to automatic picking systems and digital orders have evolved to keep pace with the speed of change in the supply chain.
Electrical Safety Update
This digital report explains how plant engineers need to take greater care when it comes to electrical safety incidents on the plant floor.
IIoT: Machines, Equipment, & Asset Management
Articles in this digital report highlight technologies that enable Industrial Internet of Things, IIoT-related products and strategies.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
Design of Safe and Reliable Hydraulic Systems for Subsea Applications
This eGuide explains how the operation of hydraulic systems for subsea applications requires the user to consider additional aspects because of the unique conditions that apply to the setting
click me