How Ethernet Works

Ethernet is a local area network (LAN) technology with networks traditionally operating within a single building, connecting devices in close proximity. At most, Ethernet devices should have only a few hundred yards of cable between them. For two devices on a network to successfully communicate, they must both understand the same protocol.

05/13/2002


Ethernet is a local area network (LAN) technology with networks traditionally operating within a single building, connecting devices in close proximity. At most, Ethernet devices should have only a few hundred yards of cable between them.

For two devices on a network to successfully communicate, they must both understand the same protocol. Ethernet follows a simple set of rules that govern its basic operation. To better understand these rules, it is important to understand Ethernet terminology.

  • Medium —a path along which the electronic signals travel.

  • Segment —a single shared medium.

  • Node —a device that attaches to a segment.

  • Frame —variably sized chunks of information.

    • The Ethernet protocol specifies a set of rules for constructing frames. There are explicit minimum and maximum lengths for frames, and a set of required information that must appear in the frame. Each frame must include destination and source addresses, which identify the recipient and the sender of the message. The address uniquely identifies the node. No two Ethernet devices can have the same address. Since a signal on the Ethernet medium reaches every attached node, the destination address is critical to identify the intended recipient of the frame. A frame with a broadcast address is intended for every node on the network.

      "Carrier sense multiple access with collision detection" (CSMA/CD) is how the Ethernet protocol regulates communication among nodes. "Multiple access" means that when one Ethernet station transmits, all the stations on the medium hear the transmission. "Carrier sense" means that before a station transmits, it "listens" to the medium to determine if another station is transmitting. If the medium is quiet, the station recognizes that this is an appropriate time to transmit.

      Ethernet nodes listen to the medium while they transmit to ensure that they are the only station transmitting at that time. If the stations hear their own transmission returning garbled, then they know that a collision occurred. A single Ethernet segment is sometimes called a collision domain because no two stations on the segment can transmit at the same time without causing a collision. When stations detect a collision, they cease transmission, wait a random amount of time, and attempt to transmit when they detect silence on the medium.

      The random pause and retry is an important part of the protocol. If two stations collide when transmitting once, then both will need to transmit again. At the next appropriate chance to transmit, both stations involved with the previous collision will have data ready to transmit. If they transmitted again at the first opportunity, they would most likely collide, and continue to collide indefinitely. Instead, the random delay makes it unlikely that any two stations will collide more than a few times in a row.


      Modern Ethernet networks use twisted pair wiring or fiber optics to connect stations in a radial pattern. Although legacy Ethernet networks transmitted data at 10 megabits per second (Mbps), modern networks can operate at 100 or even 1000 Mbps.

      Switched networks replace the shared medium of legacy Ethernet with a dedicated segment for each station. These segments connect to a switch, which acts much like an Ethernet bridge. Some switches today can support hundreds of dedicated segments. Since the only devices on the segments are the switch and the end station, the switch picks up every transmission before it reaches another node. The switch then forwards the frame over the appropriate segment. But since any segment contains only a single node, the frame reaches only the intended recipient. This feature allows many transmissions to occur simultaneously on a switched network.

      Full duplex refers to the ability to send and receive data at the same time. Legacy Ethernet is half duplex. In a switched network, nodes communicate only with the switch and never directly with each other. Switched networks also employ twisted pair or fiber optic cabling, both of which use separate conductors for sending and receiving data. In this type of environment, Ethernet stations can forgo the collision detection process and transmit at will, since they are the only potential devices that can access the medium. This ability allows end stations to transmit to the switch at the same time that the switch transmits to them, achieving a collision-free environment.



Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
June 2018
2018 Lubrication Guide, Motor and maintenance management, Control system migration
May 2018
Electrical standards, robots and Lean manufacturing, and how an aluminum packaging plant is helping community growth.
April 2018
2017 Product of the Year winners, retrofitting a press, IMTS and Hannover Messe preview, natural refrigerants, testing steam traps
August 2018
SCADA standardization, capital expenditures, data-driven drilling and execution
June 2018
Machine learning, produced water benefits, programming cavity pumps
April 2018
ROVs, rigs, and the real time; wellsite valve manifolds; AI on a chip; analytics use for pipelines
Spring 2018
Burners for heat-treating furnaces, CHP, dryers, gas humidification, and more
August 2018
Choosing an automation controller, Lean manufacturing
February 2018
Setting internal automation standards

Annual Salary Survey

After two years of economic concerns, manufacturing leaders once again have homed in on the single biggest issue facing their operations:

It's the workers—or more specifically, the lack of workers.

The 2017 Plant Engineering Salary Survey looks at not just what plant managers make, but what they think. As they look across their plants today, plant managers say they don’t have the operational depth to take on the new technologies and new challenges of global manufacturing.

Read more: 2017 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Material Handling
This digital report explains how everything from conveyors and robots to automatic picking systems and digital orders have evolved to keep pace with the speed of change in the supply chain.
Electrical Safety Update
This digital report explains how plant engineers need to take greater care when it comes to electrical safety incidents on the plant floor.
IIoT: Machines, Equipment, & Asset Management
Articles in this digital report highlight technologies that enable Industrial Internet of Things, IIoT-related products and strategies.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me