Hazard evaluation

Hazard evaluation (HE) can be defined as the systematic identification and analysis of hazards associated with a given product, machine, or process. It involves identifying the hazards and the failure modes that allow these hazards to cause injury, in addition to determining the exposure of the hazards and the severity of the hazard consequences.


Step 1 - Establish boundaries
Step 2 - Identify hazards
Step 3 - Identify failure modes
Step 4 - Evaluate exposure
Step 5 - Identify consequences
Five steps of hazard evaluation

Hazard evaluation (HE) can be defined as the systematic identification and analysis of hazards associated with a given product, machine, or process. It involves identifying the hazards and the failure modes that allow these hazards to cause injury, in addition to determining the exposure of the hazards and the severity of the hazard consequences. The deliverables resulting from HE are a definition of the system, a list of hazards, and a list of failure modes with the associated hazard, exposure, and consequences.

Step 1 - Establish boundaries

The first step in hazard evaluation is to set the boundaries of the study. It is important to make sure that the boundaries are clearly set and stated for future reference. Once the boundaries are set, everything within them (the "system") should be studied. Subdividing a large process or machine into pieces can make HE easier. In any event, it is important to make sure that all interfaces within and at the boundaries of the HE system are covered.

Additionally, all the functions associated with a given machine or system under study must be covered. Normal production operation, maintenance, setup, cleaning, jam clearing, die-setting, part loading/unloading, tool changing, and so forth must all be studied. All modes of a given machine must also be examined. Modes might include such things as normal, forward, reverse, backwash, self-clean, defrost, automatic, inch, and manual.

Step 2 - Identify hazards

Once the boundaries are defined, the next step is identifying all the hazards present within the study boundaries. A hazard can be defined as a potential for doing harm. There are many types of hazards found in a typical manufacturing environment. One class of hazard is mechanical. These include shear points (Fig. 1), pinch points (Fig. 2), nip points (such as between two in-running rollers, Fig. 3), and snag hazards (Fig. 4). A pervasive hazard is gravity. It causes objects and people to fall if not supported. Electrical hazards include not only exposure to voltage sources, but also overheated connections due to contact resistance and short circuits that can cause unintended actuation of machine parts or fires.

Chemical hazards include toxics that have both acute effects such as nausea and dizziness and chronic effects, such as cancer and damage to the central nervous system. Injury or illness from toxic exposure can result from both short-term or long-term exposure. Such exposure can be from contact, inhalation, or ingestion. Chemical hazards can also involve flammable, explosive, or reactive compounds.

Walking/working surfaces can also present hazards such as slip and fall, tripping, and other gravity hazards, such as falling through a hole, or objects falling from one surface to another. There are also ergonomic hazards, such as lifting too much weight, lifting incorrectly, and repetitive motion injuries. Compressed gases, including compressed air, are another common hazard.

As an example of identifying hazards, a press has an obvious pinch point hazard. A conveyor has nip point hazards. A machine employing a geared power train has nip point hazards. One way to identify these hazards is to carefully examine the entire system, including all boundaries established in Step 1, using a checklist (see table).

Step 3 - Identify failure modes

The third step is to identify the failure modes that will allow the hazards to cause injury. Using the system hazard list, examine the system for scenarios that could result in injury. A punch press has a pinch point at the point of operation. However, if the press has a fixed guard that provides complete protection, then a failure of the guard is required to allow injury at the point of operation. This might occur if the guard was removed for maintenance, or if the guard became broken. If the press has an interlocked guard, one failure mode would be an interlock failure.

Step 4 - Evaluate exposure

Once the hazard and failure modes are identified, the next step is to evaluate the exposure. These are the people and property potentially exposed to the hazard by a given failure mode. Often this is the machine operator or maintenance man or a product user. However, a hazard at a major chemical processing facility might involve a toxic release that would affect thousands off site. Once the hazard and failure mode is identified, determining the affected population and property is often straightforward. If the failure mode is that a press operator places his hand in a closing die due to a missing guard, the exposure is the press operator.

Evaluation of exposure can require more thought than is expected, however, because the exposure sometimes only appears obvious. Consider a setup man installing a die in a horizontal press. It would appear that if he were to drop the die he is the exposure, along with some property damage. But what if he has a helper? What if there are bystanders and the falling die creates flying objects from loose tools?

Step 5 - Identify consequences

The fifth step is to identify the consequences of the failure mode. Some failure modes have a range of potential consequences. For instance, tire tread separation might result in a mere flat tire, or rollover and multiple deaths, depending on circumstances. Use the worst consequence that is reasonably possible. Note that in-running nip points can be particularly dangerous. Typically, they only stop pulling the body in when the driving mechanism is shut off, or when the ingested body parts stall out the driving mechanism.

More Info:

John H. Hamilton and John S. Morse are available for further information on hazard evaluation. The authors can be contacted at jmorse@ryan-engineering.com and jhamilton@ryan-engineering.com . Article edited by James Silvestri, Senior Editor, 630-288-8777, jsilvestri@reedbusiness.com

Industrial hazard checklist

Mechanical nip shear pinch snag flying particles sharp objects
Thermal hot surfacessteamcryogenic materialsflameshot gases
Electrical high voltageshort circuitsburnsstatic charge
Chemical toxicflammableexplosivereactivecorrosive
Pressurized materials compressed gaseshydraulic systemspressurized grease
Radioactive sealed sourcesx-ray generator
Hazardous light sources arc weldinglaser
Ergonomics liftingrepetitive motion
Walking/working surfaces sliptripfallopenings
Other gravitynoisebiohazardsindoor air pollutants

Five steps of hazard evaluation

Establish boundaries

Identify hazards

Identify failure modes

Evaluate exposure

Identify consequences

Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
September 2018
2018 Engineering Leaders under 40, Women in Engineering, Six ways to reduce waste in manufacturing, and Four robot implementation challenges.
GAMS preview, 2018 Mid-Year Report, EAM and Safety
June 2018
2018 Lubrication Guide, Motor and maintenance management, Control system migration
August 2018
SCADA standardization, capital expenditures, data-driven drilling and execution
June 2018
Machine learning, produced water benefits, programming cavity pumps
April 2018
ROVs, rigs, and the real time; wellsite valve manifolds; AI on a chip; analytics use for pipelines
Spring 2018
Burners for heat-treating furnaces, CHP, dryers, gas humidification, and more
August 2018
Choosing an automation controller, Lean manufacturing
September 2018
Effective process analytics; Four reasons why LTE networks are not IIoT ready

Annual Salary Survey

After two years of economic concerns, manufacturing leaders once again have homed in on the single biggest issue facing their operations:

It's the workers—or more specifically, the lack of workers.

The 2017 Plant Engineering Salary Survey looks at not just what plant managers make, but what they think. As they look across their plants today, plant managers say they don’t have the operational depth to take on the new technologies and new challenges of global manufacturing.

Read more: 2017 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Material Handling
This digital report explains how everything from conveyors and robots to automatic picking systems and digital orders have evolved to keep pace with the speed of change in the supply chain.
Electrical Safety Update
This digital report explains how plant engineers need to take greater care when it comes to electrical safety incidents on the plant floor.
IIoT: Machines, Equipment, & Asset Management
Articles in this digital report highlight technologies that enable Industrial Internet of Things, IIoT-related products and strategies.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
Design of Safe and Reliable Hydraulic Systems for Subsea Applications
This eGuide explains how the operation of hydraulic systems for subsea applications requires the user to consider additional aspects because of the unique conditions that apply to the setting
click me