Get more from your data analysis: 5 tips to understanding the numbers

Maintenance managers who use CMMS for maintenance functions should know these key best practices to improve their asset reliability

12/13/2013


In order to make informed and financially sound decisions regarding their assets, most maintenance managers will use some form of computerized maintenance management system (CMMS) to drive their maintenance functions.

It is vital that such systems are properly configured and structured and that data has been accurately entered, because it is precisely that repair data that will allow for future data harvesting and analysis. This article outlines a number of the key best practices in CMMS data analysis that will enable managers to drive improvements in asset reliability.

Set clear parameters

Once sufficient historical data has been accumulated in the CMMS, decide on a time period to be examined, such as one year. Then, identify “bad actors” that have created the most difficulty regarding downtime, labor/material costs, number of repair incidents, and so on in relation to the assets that will be analyzed, following the concept of quick wins. Obtain input from operations and the maintenance performers who have the most interaction with the unit(s) being examined, as this will allow you to identify which equipment most needs the budget you have on hand. 

Proper planning: An example

Whatever assets are chosen for analysis, determine the maintenance indices as in the table below by comparing the hours reported as dedicated to PM work, planned repair hours, and unplanned repair hours. This can be done for the entire facility, a group of machines such as a production line, or a single asset. 

These percentages will vary depending on the type of industry involved. High-speed production will vary from assembly line work such as an automotive plant. Each plant’s goals should be established with realistic and attainable figures, which should be reviewed and updated on a regular basis as the facility progresses in its reliability improvements.

The data contained in the table below was taken from a high-speed production facility, and examines 52 weeks of data, as reported by a staff of 6 maintenance performers during one year of CMMS operations. In this instance 1,680 hours were netted out of the gross hours available to reflect holidays, sick time, and vacation for the staff, rendering 10,800 available man-hours for the year. 

Initially, the PM percentage goal should be in the 70%-75% range, planned repair work 15%-20%, and unplanned work 5%-10%. World-class maintenance strives for a 19:1 planned to unplanned hours ratio, but high-speed production may have a more realistic ratio of 9:1 due simply to the speed of the equipment.

In Figure 1, the planned (PM & planned repair) to unplanned/reactive hours ratio is 5.6:1, (3,149 + 1,054 ÷ 751), meaning for every 5.6 hours of planned work, the plant reported 1 hour of unplanned work. 

Figure 1: The planned (PM & planned repair) to unplanned/reactive hours ratio is 5.6:1, (3,149 + 1,054 ÷ 751), meaning for every 5.6 hours of planned work, the plant reported 1 hour of unplanned work. Courtesy: T.A. Cook Consultants, Inc.

Ensure reporting is accurate

If the combined planned and unplanned repair indices are greater than the time dedicated to PM, the figures are skewed and the reasons for this lopsidedness require an investigation, as this indicates more reactive than proactive work is taking place. Inaccurate reporting will impact the pool of hours being analyzed. Accurate reporting must be emphasized to the maintenance performers, as incorrect reporting will distort future analysis of a number of functions, including staffing requirements. Planning and scheduling can also be negatively impacted when updates are performed to the estimated times based on reported hours.     

Avoid duplication

One repair incident may consume multiple individuals across more than one shift. Each performer or shift documenting its participation on an individual basis will skew the repair data and give the appearance of more issues than are actually occurring, distort the MTBR figure, and artificially inflate labor and material costs.

One repair should be documented against the unit which contains all labor hours, material costs, and downtime. One incident equals one repair, period. When you have your car serviced, you don’t receive one invoice from each person who performed different functions. Don’t accept one repair event reported separately by more than two individuals.

The PM compliance for the unit being researched should also be examined. A unit whose reported PM compliance is high yet continues to experience a high rate of repairs requires additional evaluation to identify the gap. It could be the result of PMs with non-value-added content, inspections that are not aligned with the maintenance strategy of the unit, or potential false reporting. Determine why a unit with a 98% PM compliance would generate multiple repairs.

The reported factors for PM, planned, and unplanned repair hours can also define the man-weeks consumed for those categories and provide information on labor expenses, which can be the greatest amount of a unit’s overall costs. 

Use keywords to assess the situation

Once the units to be examined have been determined, generate a search in the CMMS for the unit(s) being analyzed and identify the recurring/repetitive repair incidents by keyword. This function may be already taking place if the facility has a competent planner/scheduler reviewing the data on a regular basis. These can then be entered into a Pareto chart, and a cumulative percentage can also be incorporated. This will supply the information on which machine, component, or area to concentrate the effort for analysis using the 80-20 rule.

Figure 2: In this example, the MTBF for this component calculates as 1.54 weeks, and the assigned PM tasking needs to be examined to ensure it reflects the operating demands placed on the component and that the inspections are correctly aligned. Courtesy:Using the example of the Chain in Figure 2, the MTBF for this component calculates as 1.54 weeks, and the assigned PM tasking needs to be examined to ensure it reflects the operating demands placed on the component and that the inspections are correctly aligned as to strategy, frequencies, work times, skills, verbiage, and so forth.

Cross-referencing back to the established inspections for the component, determine what checks and inspections are present for the Chains. How do the frequencies compare to the MTBR/MTBF? Are there issues identified in the repair descriptions that have no inspections established? Either adjust the existing data to reflect what is “real in the field” or add as appropriate.

Regardless of the type of analysis planned―fish-bone, wiebull, probability distribution, Pareto, failure effects mode analysis, or root cause analysis―it all begins with accurate data, extracted from a CMMS.

Essentially, it is your data and it is up to you to decide what to do with it. Whether it is utilized for value-added analysis or allowed to reside in history with no practical use is up to the user, and how effectively he or she wishes to drive improvements in the life and reliability of the assets.



Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
June 2018
2018 Lubrication Guide, Motor and maintenance management, Control system migration
May 2018
Electrical standards, robots and Lean manufacturing, and how an aluminum packaging plant is helping community growth.
April 2018
2017 Product of the Year winners, retrofitting a press, IMTS and Hannover Messe preview, natural refrigerants, testing steam traps
June 2018
Machine learning, produced water benefits, programming cavity pumps
April 2018
ROVs, rigs, and the real time; wellsite valve manifolds; AI on a chip; analytics use for pipelines
February 2018
Focus on power systems, process safety, electrical and power systems, edge computing in the oil & gas industry
Spring 2018
Burners for heat-treating furnaces, CHP, dryers, gas humidification, and more
April 2018
Implementing a DCS, stepper motors, intelligent motion control, remote monitoring of irrigation systems
February 2018
Setting internal automation standards

Annual Salary Survey

After two years of economic concerns, manufacturing leaders once again have homed in on the single biggest issue facing their operations:

It's the workers—or more specifically, the lack of workers.

The 2017 Plant Engineering Salary Survey looks at not just what plant managers make, but what they think. As they look across their plants today, plant managers say they don’t have the operational depth to take on the new technologies and new challenges of global manufacturing.

Read more: 2017 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Electrical Safety Update
This digital report explains how plant engineers need to take greater care when it comes to electrical safety incidents on the plant floor.
Maintenance & Safety
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
IIoT: Machines, Equipment, & Asset Management
Articles in this digital report highlight technologies that enable Industrial Internet of Things, IIoT-related products and strategies.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me