Gas Technology: Thermal fluid could be a better way

Taking the pressure off

04/11/2014


Thermal fluid heaters use a liquid-phase heat transfer medium to deliver heat energy for industrial processes. Thermal oil, glycol, or even water are all possible heat mediums. Fluid is heated and circulated to process Installed view of a vertical-coil thermal fluid heater. Courtesy: Fulton industries. points using a closed loop system. Thermal oil systems are especially attractive because of their ability to deliver fluid at temperatures up to 750° F without the need for a high-pressure design such as is required with a steam or hot water boiler.

Advantages

With pumped fluid heat transfer using oil, risks of scale formation, corrosion and frost are avoidable. Thermal fluid heaters are typically easier to operate and maintain.  Also, the inherent simplicity and a wide range of heat recovery options make it possible to operate such systems at peak energy efficiency. Because these systems are generally not highly pressurized, it is usually not necessary to have a licensed operator on duty. Heaters are built with reliable automatic safety devices that allow unattended operation. Because the volume of liquid is relatively small, they can be brought up to temperature quickly after an overnight shutdown period.

Product Designs

Thermal fluid heaters use an energy source to heat the fluid in a horizontal or vertical tank. Natural gas is often the fuel of choice because of its clean burning characteristics and attractive price. Units are available in a wide range of sizes, from 500,000 Btu/hour to 40 MMBtu/hour. Even larger process outputs are possible with multiple units. The working fluid is usually a high-temperature oil with a low oxidation characteristic and high heat transfer capability. In the unit design, it is important to keep the heated oil moving to avoid oxidation at the heat transfer point.

The heater itself is typically a gas-fired heat exchanger, with the circulating fluid passing through enclosed helical or serpentine coils in the combustion area. The heater is equipped with redundant temperature and pressure relays to prevent over-heating and to assure accurate delivery of the working fluid at the set temperature.

Oils for Specific Temperatures and Applications

Thermal oils of both mineral and synthetic origin are available with a range of thermal and physical characteristics from a variety of suppliers. The fluid used must be free of suspended solids, non-toxic in the case of leaks, and stable at temperatures at least 100 degrees above the planned operating temperatures. Manufacturers of thermal fluid heaters recommend periodic analysis of the oil to assure that it is not oxidizing or picking up any contaminants. Most offer analysis services.

Because of pumping, the oil is pressurized and piping must be specified to meet this operating pressure. Heaters are equipped with systems to remove both air and moisture from the circulating fluid.  Most units are completely factory-assembled and need only to be connected to a fuel supply (for example, a gas train), to exhaust venting, and to the thermal oil distribution system.

Wide Range of Markets

Thermal fluid heaters have found applications in a variety of markets, from asphalt processing to plastics manufacturing, from food and paper processing to the pharmaceutical industry. Ideal applications are where there is a need for controlled thermal input from a sealed system. One leader in fluid heaters is Fulton Thermal Corporation, headquartered in Pulaski, New York. Fulton offers both horizontal and vertical tank units in a wide range of sizes.  

Mike Roberts from Fulton indicates that thermal fluid heaters have thermal and combustion efficiencies about the same as similar-sized boilers. But he adds, “Where you see a gain is in the system efficiencies. With a thermal system, you don’t lose efficiency by blowing down hot water or wasting heat through steam traps like you do with a steam system.”

Heat recovery can add to the efficiency of systems. Typically this is achieved by use of an economizer on the heater exhaust train, with captured heat used to pre-heat returning fluid or combustion air. Fluid pre-heating can also be accomplished with other industrial energy sources such as boiler exhausts or product cooling processes.

Reduced Maintenance

Roberts also points to another advantage, “With a thermal system, maintenance is much less.” For owners this can translate to reduced downtime, longer production runs, reduced labor costs, and lower process startup costs. Roberts points out, “Some maintenance is required, just like any other fuel-fired piece of equipment. You have to maintain the combustion system. But you don’t have to maintain water treatment equipment, or any steam-side components. You still have required maintenance to keep the system going.” Regarding system life, Roberts indicate that well-maintained systems can have a life of 30+ years.

Getting Started

Whether yours is a new industrial facility, or you are replacing an older steam, hot water or thermal system, it is important to correctly specify your needed thermal range, and the total process heat requirement. Manufacturers offer factory assistance in selecting the right size and type of system. Thermal fluid systems offer simplicity, reduced maintenance, and the ability to avoid the regulatory requirements of a steam plant. Now might be the time to consider this option.



Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
September 2018
2018 Engineering Leaders under 40, Women in Engineering, Six ways to reduce waste in manufacturing, and Four robot implementation challenges.
July/Aug
GAMS preview, 2018 Mid-Year Report, EAM and Safety
June 2018
2018 Lubrication Guide, Motor and maintenance management, Control system migration
August 2018
SCADA standardization, capital expenditures, data-driven drilling and execution
June 2018
Machine learning, produced water benefits, programming cavity pumps
April 2018
ROVs, rigs, and the real time; wellsite valve manifolds; AI on a chip; analytics use for pipelines
Spring 2018
Burners for heat-treating furnaces, CHP, dryers, gas humidification, and more
August 2018
Choosing an automation controller, Lean manufacturing
September 2018
Effective process analytics; Four reasons why LTE networks are not IIoT ready

Annual Salary Survey

After two years of economic concerns, manufacturing leaders once again have homed in on the single biggest issue facing their operations:

It's the workers—or more specifically, the lack of workers.

The 2017 Plant Engineering Salary Survey looks at not just what plant managers make, but what they think. As they look across their plants today, plant managers say they don’t have the operational depth to take on the new technologies and new challenges of global manufacturing.

Read more: 2017 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Material Handling
This digital report explains how everything from conveyors and robots to automatic picking systems and digital orders have evolved to keep pace with the speed of change in the supply chain.
Electrical Safety Update
This digital report explains how plant engineers need to take greater care when it comes to electrical safety incidents on the plant floor.
IIoT: Machines, Equipment, & Asset Management
Articles in this digital report highlight technologies that enable Industrial Internet of Things, IIoT-related products and strategies.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
Design of Safe and Reliable Hydraulic Systems for Subsea Applications
This eGuide explains how the operation of hydraulic systems for subsea applications requires the user to consider additional aspects because of the unique conditions that apply to the setting
click me