Flowmeters are used for determining the amount of product passing through a pipe for purposes of product blending, determining billing or cost, machine lubrication, process heating or cooling, and many other applications. Reliability and accuracy are two of the selection factors used in choosing a flowmeter.


Key Concepts
  • Types

  • Selection

  • Comparison

Selection factors

Flowmeters are used for determining the amount of product passing through a pipe for purposes of product blending, determining billing or cost, machine lubrication, process heating or cooling, and many other applications.

Reliability and accuracy are two of the selection factors used in choosing a flowmeter. Accuracy is important because it can make a difference between profit and loss when dispensing fluids. Inaccurate measurement could result in serious damage to equipment or product.

Flowmeter selection is not easy because there are about two dozen designs to choose from. Many are established designs. Thermal mass, Coriolis, and ultrasonic have benefited from new technology and electronics to become popular.

There are two basic types of flowmeters used with pipes: full-bore inline and insertion. Inline flowmeters allow the entire flow to pass through and derive a flow rate from average velocity. Other designs use positive displacement or mass flow techniques.

Insertion-type flowmeters protrude onto the pipe. They sample a point in the flow stream that represents average velocity or create a pressure differential dependent on flow.

Orifice plates are the most popular flowmeters in use today (Fig. 1). They produce the best results when measuring turbulent flow of clean liquids. Major advantages are no moving parts and low cost, regardless of pipe size. Metering accuracy depends on installation, orifice area ratio, and fluid properties. They must be installed in straight pipe runs.

Venturi tubes can handle large flows with low pressure drop and good accuracy. They can be used with most liquids, including those with high solids content. Venturis are not recommended for highly viscous liquids or those containing large amounts of sticky solids.

Flow nozzles represent a compromise between an orifice and a venturi. They can handle large solids, high velocities, high turbulence, and very high temperatures. Liquids with suspended solids can be metered.

Variable area flowmeters maintain a relatively constant pressure differential with varying flow rates by using a moveable restriction in the flow path (Fig. 2). The position of the piston in the housing indicates the flow rate. Because the flow rate can be read directly, secondary reading devices are unnecessary.

Thermal mass flowmeters operate independently of pressure and viscosity (Fig. 3).

The flow stream conducts heat from the heated sensing element. The conducted heat is directly proportional to mass flow rate. The amount of heat carried away depends on the fluid's velocity, density, specific heat, and thermal conductivity. If the probe becomes coated, heat transfer is changed, which negatively affects accuracy and response time.

Coriolis mass flowmeters accurately measure flow rates independent of temperature, pressure, viscosity, and solids content (Fig. 4).

In these units, fluid flow causes two, constantly vibrating tubes to twist. The amount of twist depends on the flow rate. The design is noninvasive and is used with many fluids over a wide range of flow rates. Since these meters maintain accuracy, they are used in applications that require tight control, management of high-value fluids, and custody transfers.

Turbine flowmeters use a rotor with propeller-like blades (Fig. 5).

Flow rate is proportional to rotational speed and is sensed by a magnetic pickup, infrared beam, or a radio frequency field. This design provides excellent short-term accuracy, repeatability, and rangeability. It is usually used with clean fluids and is not effective with swirling or high viscosity fluids. Meters must be calibrated for each application.

Magnetic flowmeters are constructed with a coil around the flow stream that creates a magnetic field (Fig. 6).

An electrically conductive fluid generates a voltage as it moves through the magnetic field. This voltage is proportional to the flow rate. These flowmeters can measure difficult and corrosive liquids and slurries and forward and reverse flow. The fluid must be electrically conductive and nonmagnetic. Most water-based fluids can be measured, petroleum-based fluids cannot.

Positive displacement flowmeters measure incremental volumes of flow as line pressure fills and displaces each chamber's volume downstream (Fig. 7).

Flow rate is determined by counting the number of times this action occurs. Because these meters have many moving parts, they are not suited for dirty or gritty fluids. Leakage around the gears or vanes can cause inaccurate readings, but viscous fluids reduce this effect. Designs include reciprocating single or multiple pistons, nutating disks, oval gears, lobed impellers, and rotary vanes.

Vortex flowmeters use a bluff body or shedder bar to generate vortices in the flow stream (Fig. 8).

Flow rate is determined by counting the vortices that form behind the bluff body. Frequency of vortex formation is directly proportional to fluid velocity. These flowmeters are rugged devices with no moving parts. Use with slurries or high-viscosity liquids is not recommended. They are not useful at very low flow rates because vortex formation is poor due to a lack of energy in the fluid.

Ultrasonic flowmeters are available in two designs: Doppler and transit time. Doppler measures the frequency shift of a sound wave to determine flow rate. Transit time measures the time it takes a sound wave to travel a specified distance through a flow stream. The variation in time is related to flow rate.

Doppler flowmeters use a constant-frequency sound wave transmitted through the pipe walls and fluid to a receiver. The sound wave is reflected back to the receiver by suspended solids, entrained gases, or flow turbulence in the fluid. Because the liquid causing the reflection is moving, frequency of the returned signal is shifted proportionately to the liquid's velocity.

Transit time flowmeters have transducers mounted at a 45-deg angle to flow, either on the same side or opposite sides of a pipe, depending on pipe and liquid characteristics (Fig. 9).

Speed of the signal or shift of frequency between the transducers increases or decreases with the direction of transmission and velocity of the fluid. The liquid being measured must be relatively free of entrained gases or solids.

Advantages and disadvantages of flowmeters

Type Advantages Disadvantages
Differential pressureLow initial costSubject to plugging
Familiar technologyPressure drop
Easy to useOrifice plate wear
Thermal massLow costPeriodic cleaning
Handles low-density fluidsNot highly accurate
Coriolis massHigh accuracySensitive to vibration
True mass flow measurementHigh initial cost
Not suitable for large pipes
Accepted technologyHigh flow velocity can cause damage
MagneticAccurateRequires conductive fluid
No pressure dropElectrodes subject to coating from fluid
Adaptable to large pipes
Positive displacementAccurateWear
Wide rangeabilityLimited use on large pipes
Requires clean fluids
VortexAccurateSensitive to vibration
Easy to installLacks approvals
UltrasonicLow maintenanceHigh initial cost
NonintrusiveMay require clean fluid
Adaptable to large pipesClamp-on installation

Selection factors

At a minimum, specifiers of flowmeters should consider the following:

Ability to withstand the process environment: fluid, pressure, temperature, etc.

Ability to provide the accuracy of measurement required

Serviceability and maintenance requirements

Long-term stability, durability, and frequency of calibration

Cost of purchase and installation

Ease of interfacing with existing equipment

Pressure loss incurred, level of swirl generated, or pulsation produced

Adaptable to future needs

Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
September 2018
2018 Engineering Leaders under 40, Women in Engineering, Six ways to reduce waste in manufacturing, and Four robot implementation challenges.
GAMS preview, 2018 Mid-Year Report, EAM and Safety
June 2018
2018 Lubrication Guide, Motor and maintenance management, Control system migration
August 2018
SCADA standardization, capital expenditures, data-driven drilling and execution
June 2018
Machine learning, produced water benefits, programming cavity pumps
April 2018
ROVs, rigs, and the real time; wellsite valve manifolds; AI on a chip; analytics use for pipelines
Spring 2018
Burners for heat-treating furnaces, CHP, dryers, gas humidification, and more
August 2018
Choosing an automation controller, Lean manufacturing
September 2018
Effective process analytics; Four reasons why LTE networks are not IIoT ready

Annual Salary Survey

After two years of economic concerns, manufacturing leaders once again have homed in on the single biggest issue facing their operations:

It's the workers—or more specifically, the lack of workers.

The 2017 Plant Engineering Salary Survey looks at not just what plant managers make, but what they think. As they look across their plants today, plant managers say they don’t have the operational depth to take on the new technologies and new challenges of global manufacturing.

Read more: 2017 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Material Handling
This digital report explains how everything from conveyors and robots to automatic picking systems and digital orders have evolved to keep pace with the speed of change in the supply chain.
Electrical Safety Update
This digital report explains how plant engineers need to take greater care when it comes to electrical safety incidents on the plant floor.
IIoT: Machines, Equipment, & Asset Management
Articles in this digital report highlight technologies that enable Industrial Internet of Things, IIoT-related products and strategies.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
Design of Safe and Reliable Hydraulic Systems for Subsea Applications
This eGuide explains how the operation of hydraulic systems for subsea applications requires the user to consider additional aspects because of the unique conditions that apply to the setting
click me