Examining machinery floor anchors

There are six basic principles by which an anchor develops its holding power in concrete: friction, keying, threading, adhesion, welding to rebar, and embedding in concrete. Friction: The tensile load is transferred to concrete by friction, with an expansion force necessary for this action to take place.


There are six basic principles by which an anchor develops its holding power in concrete: friction, keying, threading, adhesion, welding to rebar, and embedding in concrete.

Friction: The tensile load is transferred to concrete by friction, with an expansion force necessary for this action to take place. The force can be produced by driving an expansion plug into an anchor.

In an expansion anchor, an expansion force is exerted against the wall of the hole as a result of the displacement of a cone relative to a sleeve. Longitudinal force is transmitted from the anchor to the concrete by friction.

At the same time, the expansion force causes permanent local deformation of the concrete. The sleeve keys into the concrete, providing a second source of holding power.

Keying: The tensile load is in equilibrium with bearing forces acting on the concrete, such as an undercut anchor.

Threading: A special drill bit makes the correct size hole in concrete. The anchor bolt has dual threads that cut into the concrete and provide a full grip. Since there are no expansion forces, this anchor can be installed closer to an edge.

Adhesion: A synthetic resin fills the annular space around the anchor and provides adhesive bonding to the anchor and the wall of the drilled hole. Transfer of the tensile load takes place through shear stresses into the concrete. For adhesive anchors, there is, in addition to bonding, a local keying as the adhesive infiltrates into the pores of the concrete.

Welding: Anchors are spotted in place and welded to rebar. Concrete is poured around the anchor and rebar. This approach is one of the strongest mounts and does not project above the surface of the floor. While there is some adjustment in the anchor, accurate location is important.

Embedding : A fixed or adjustable hook bolt is inserted into freshly poured concrete and placed in location. This approach is a simple way to provide a machinery anchor. Load capacity depends on concrete strength, and the mounts can't be easily removed.

Anchors derive their holding power through a combination of these working principles.


Failure modes

The weakest aspect of an anchoring system determines the failure mode. The failure mode depends on the type of anchor, concrete strength, depth of embedment, load, edge distance, and spacing between anchors.

For mechanical anchors, the failure modes under tension loading are steel breakage, concrete cone failure, concrete splitting, edge breakout or pullout (including any expansion sleeve), or pull through (when the anchor shaft pulls through the expansion mechanism).

For adhesive-bonded anchors, the failure mode is bond failure along the concrete/adhesive interface or along the adhesive/anchor rod bond line. Many times a shallow concrete cone accompanies the bond failure. This failure is a secondary, not controlling problem. For shallow embedments, adhesive anchors may fail with a concrete cone breakout.

The failure modes in shear for both mechanical and adhesive anchors are steel breakage, back pryout of the anchor (usually with shallow embedments), or edge breakout.


The primary factors that directly affect the load-carrying capacity of anchors are embedment depth, edge distance, spacing between anchors, and concrete strength. Testing is performed in different concrete strengths and embedments to develop tables of ultimate load capacities for most common installation conditions.

Intermediate load values for other concrete strengths and embedments can be determined by linear interpolation.

Edge distance

If anchors are installed near an edge, there may be a reduced volume of concrete to resist the load. The closest point near an edge where there is no influence or reduction of anchor capacity is called the critical edge distance .

For distances less than the critical edge distance, reduction factors are applied to obtain the reduced capacity.

The minimum edge distance is the minimum distance an anchor can be properly installed and the specified torque applied without a concrete edge failure. Anchor technical data gives edge load adjustment factors by table, equation, and graph.

Joseph L. Foszcz, Senior Editor, 630-320-7135, jfoszcz@cahners.com

PLANT ENGINEERING magazine extends it appreciation to Deco Mfg. Co., Hilti Corp., Powers Fasteners, Inc., Simpson Strong-Tie Co., Inc., and Unisorb for the use of their material in the preparation of this article.

Anchor tension ranges

TypeBolt size range, in.Load range, lb
Friction1/4 - 11/4360 - 9500
Keyed3/8 - 11/83400 - 9000*
Threaded1/4 - 3/4380 - 5600
Adhesive1/4 - 11/2400 - 43,000
Embedded1/2 - 11/41900 - 13,000
Welded1/2 - 34000 - 170,000
Capacities based on 4000-psi concrete and a safety factor of 4, unless noted.
*2500-psi concrete and a safety factor of 3.

More info
Deco Manufacturing Co.
Hilti, Inc.
ITW Ramset/Redhead
Mason Industries
Powers Fasteners, Inc.
Simpson Strong-Tie Co., Inc.
Royal Products
Unisorb Installation Technologies

Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
September 2018
2018 Engineering Leaders under 40, Women in Engineering, Six ways to reduce waste in manufacturing, and Four robot implementation challenges.
GAMS preview, 2018 Mid-Year Report, EAM and Safety
June 2018
2018 Lubrication Guide, Motor and maintenance management, Control system migration
August 2018
SCADA standardization, capital expenditures, data-driven drilling and execution
June 2018
Machine learning, produced water benefits, programming cavity pumps
April 2018
ROVs, rigs, and the real time; wellsite valve manifolds; AI on a chip; analytics use for pipelines
Spring 2018
Burners for heat-treating furnaces, CHP, dryers, gas humidification, and more
August 2018
Choosing an automation controller, Lean manufacturing
September 2018
Effective process analytics; Four reasons why LTE networks are not IIoT ready

Annual Salary Survey

After two years of economic concerns, manufacturing leaders once again have homed in on the single biggest issue facing their operations:

It's the workers—or more specifically, the lack of workers.

The 2017 Plant Engineering Salary Survey looks at not just what plant managers make, but what they think. As they look across their plants today, plant managers say they don’t have the operational depth to take on the new technologies and new challenges of global manufacturing.

Read more: 2017 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Material Handling
This digital report explains how everything from conveyors and robots to automatic picking systems and digital orders have evolved to keep pace with the speed of change in the supply chain.
Electrical Safety Update
This digital report explains how plant engineers need to take greater care when it comes to electrical safety incidents on the plant floor.
IIoT: Machines, Equipment, & Asset Management
Articles in this digital report highlight technologies that enable Industrial Internet of Things, IIoT-related products and strategies.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
Design of Safe and Reliable Hydraulic Systems for Subsea Applications
This eGuide explains how the operation of hydraulic systems for subsea applications requires the user to consider additional aspects because of the unique conditions that apply to the setting
click me