Electric devices provide a better connection to smart maintenance systems

Smart actuators provide the capability for variable maintenance functions. Smart actuators and other electrical devices lower maintenance and manufacturing costs.

12/11/2017


Smart actuators can reduce setup times for changeovers by taking the place of manual solutions. Image: Courtesy Thomson IndustriesIn many plants, moving parts such as actuators are the most critical devices on the floor. They control vital functions such as valve movement in continuous process plants and conveyor adjustments in batch production plants. The first generation of actuators developed simply converts either pneumatic or fluid power into motion. These actuators provide high-speed stroking at high volumes, but have limited precision and other drawbacks as well. Pneumatic actuators, for example, require a continuous supply of air, which is not cost-efficient for automation of intermittent operations. Hydraulic fluid-powered actuators are more energy-efficient, but have higher maintenance demands with the potential fluid leakage. And neither pneumatic or hydraulic actuators can participate easily in control schemes.

Increasingly, machine designers are choosing to replace pneumatic- and fluid-powered actuators with electro-mechanical actuators, which provide more energy-efficient and cleaner operation. These electric actuators can provide both high-speed and high-precision performance, but legacy models have not been cost-effective for automating intermittent activity. End users have preferred to perform intermittent tasks such as adjusting conveyor belts for product changeover manually rather than pay a significantly higher cost for capital equipment.

Why smart actuators are flourishing

By integrating smart actuators into their equipment, machine designers give end users the ability to switch motor direction within the actuator itself. This low-level switching capability relieves users of the need to control an external H-bridge, and to install and maintain the heavy wiring needed to support it. Smart actuators require only two wires for power and a few thin control wires for communication with a simple switch, final element, programmable logic controller (PLC), or other controller. This feature enables communications with network buses such as those using the J1939 Controller Area Network (CAN) bus protocol for integration with other applications.

It is this combination of such capabilities at a reduced price point that makes the new generation of smart actuators a good idea for intermittent duty cycle change-over applications. Using an actuator to control conveyor height might previously have required a costly, high-precision actuator supported by a complex system involving stepper or servomotors and external switches; now, with just a few wires, machine designers can connect a cost-efficient actuator with precision fit for purpose to the main automation controller and program it like any other function. As long as the system can communicate with the actuator, it doesn’t matter whether the operation happens once a day or 500 times a day. Smart actuators provide great flexibility with a lower total system cost.

Automating and accelerating changeovers especially is valuable in plants that have characteristically short runs. Where a packaging machine product changeover traditionally might require manual intervention to switch from one product to another, a sequence of multiple products now can be programmed in advance, reducing setup time.

Benefits for the maintenance function

As factories get smarter and smart actuators are adopted, maintenance teams will find them a simple and pain-free part of their overall automation system. Maintenance technicians and facilities managers will find that smart actuators are cleaner and more energy-efficient than fluid power solutions and require minimal attention to external wiring.

Any maintenance the smart actuators require will be assisted by diagnostic information delivered across the network bus. The onboard electronics can, for example, track the number of cycles the actuator has run, and provide temperature measures and current consumption. Analysis of these factors could help determine whether increases in temperature or power consumption are related to abnormal wear on the system or to application demands. This information also can benefit maintenance simply by shutting down a process to protect the application and before overheating or current spike damages the actuator.

Some OEMs already are using the communications capabilities to monitor actuator operations via the cloud to help end users manage spares and replacements more strategically. By tracking the number of cycles that have been run and forecasting replacement intervals for parts, manufacturers can alert customers of impending failures, and order, deliver, and even install new parts before a failure occurs.

Increased adoption of intelligent actuators mirrors what is trending with most other devices on the plant floor. As valves, switches, pumps, and other devices get smarter and better able to communicate, this will lead to greater efficiency, resulting in a more productive and easily maintained environment.

Dave Buckley is Manager of Linear and Automation at Motion Industries (Canada), Inc. Hakan Persson is Global Product Line Director, Actuators at Thomson Industries, Inc.



Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
October 2018
Tools vs. sensors, functional safety, compressor rental, an operational network of maintenance and safety
September 2018
2018 Engineering Leaders under 40, Women in Engineering, Six ways to reduce waste in manufacturing, and Four robot implementation challenges.
July/Aug
GAMS preview, 2018 Mid-Year Report, EAM and Safety
October 2018
2018 Product of the Year; Subsurface data methodologies; Digital twins; Well lifecycle data
August 2018
SCADA standardization, capital expenditures, data-driven drilling and execution
June 2018
Machine learning, produced water benefits, programming cavity pumps
Spring 2018
Burners for heat-treating furnaces, CHP, dryers, gas humidification, and more
October 2018
Complex upgrades for system integrators; Process control safety and compliance
September 2018
Effective process analytics; Four reasons why LTE networks are not IIoT ready

Annual Salary Survey

After two years of economic concerns, manufacturing leaders once again have homed in on the single biggest issue facing their operations:

It's the workers—or more specifically, the lack of workers.

The 2017 Plant Engineering Salary Survey looks at not just what plant managers make, but what they think. As they look across their plants today, plant managers say they don’t have the operational depth to take on the new technologies and new challenges of global manufacturing.

Read more: 2017 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Material Handling
This digital report explains how everything from conveyors and robots to automatic picking systems and digital orders have evolved to keep pace with the speed of change in the supply chain.
Electrical Safety Update
This digital report explains how plant engineers need to take greater care when it comes to electrical safety incidents on the plant floor.
IIoT: Machines, Equipment, & Asset Management
Articles in this digital report highlight technologies that enable Industrial Internet of Things, IIoT-related products and strategies.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
Design of Safe and Reliable Hydraulic Systems for Subsea Applications
This eGuide explains how the operation of hydraulic systems for subsea applications requires the user to consider additional aspects because of the unique conditions that apply to the setting
click me