Eight factors to consider when choosing a small actuator

Whether for packaging, life sciences, or factory automation, smooth motion, fast accelerations, and a high degree of accuracy are hallmark requirements for linear movement actuators.


Whether for packaging, life sciences, or factory automation, smooth motion, fast accelerations, and a high degree of accuracy are hallmark requirements for linear movement actuators. Increasingly, miniaturization has added the additional requirement of compactness.
One system that can meet all of the above requirements in its conversion of motor torque to linear thrust is the single axis ball screw actuator. Ball screws convert rotary motion to linear motion, or torque to thrust, and vice versa.
A ball screw actuator is a combination of a ball screw on which a slide block or nut's movement is guided by recirculating steel balls that roll between the block and raceways of guide rails. This configuration eliminates backlash.
Here are eight factors to consider when selecting an actuator for your next project .

1. System solution vs. custom built

Traditionally, many equipment manufacturers designed and assembled their own custom ball screw actuators. In fact, many semiconductor manufacturers and medical equipment manufacturers still do. To design custom stages, engineers have to design the ball screw size - meaning they have to find the right three main components: ball screw, carriage, and guide rails. They also need supports for the ball screw on both ends, and motor brackets. After mounting all the components, adjustments have to be made repeatedly.
Many companies have recognized the advantages of purchasing off-the-shelf. Ball screw actuator systems typically come in at least five different stage sizes. They have several travel length options, and there are other options already designed. Once the engineer identifies the optimum system, he or she just has to get the right motor.
However, to choose the right system for an application, actuator systems must be analyzed carefully. Comparisons of the design and sizing of components such as the slide block, raceway, bearing, guide rail, ball-screw, nut, and housing materials are critical. They all factor into actuator performance.

2. Compactness
Choosing to assemble ball screw actuator components into a custom housing usually creates a larger unit overall than using a pre-designed system. For one thing, a pre-designed system is much more compact because the guide rail of the actuator is integrated with the structure of the actuator, and the slide block has the ball screw nut incorporated into it. Generally, if you were to build an actuator from assorted components, you would need a housing to put a ball screw nut into. Also, there would be a separate base for linear guides. So, the entire unit would be much larger - as much as 30% larger.

3. Choice of actuators
To choose the most effective actuator for a particular application, critical information must first be ascertained. Factors such as load capacity, operation speed, stroke length, environment, orientation, and positional accuracy have to be identified and quantified. Once these factors are known, we can consider the effects of component design differences on the operation of ball screw actuators in the 4 ft. and under class.

4. Load capacity
In addition to ball screw and guide rail size, load capacity depends on the size of the recirculating steel balls that roll between the block and the raceways in the guide rails, as well as the number of balls in contact with the raceways, and the manner in which they make contact. One way to meet load capacity is by increasing the size of the ball screw and guide rails. Another way, which does not increase the overall size of the actuator, is to increase the ball circuits. Most standard ball screw actuators have one set of recirculating balls on either side of the block.
Doubling the number of ball circuits to two on either side of the block doubles the load capacity of the actuator. Since we are discussing actuators with about 4 ft. of rail travel, an example of maximum load for a standard 1,380 mm rail length with two ball circuits is 37 kilonewtons. With four ball circuits it is 74 kilonewtons.
On the low end of the actuator size range, an actuator with a 100 mm length rail with two ball circuits can be expected to have a load capacity of 3.945 kilonewtons, whereas with four ball circuits it is load is 7.89 kilonewtons.

5. Precision
Actuator systems are generally offered in two or three grades, or levels of accuracy. "Commercial Grade" is the lowest. Next is "High" or "Standard Grade." "Precision Grade" is the highest. To compare systems' levels of accuracy, one cannot assume that all manufacturers' lowest to highest grades have comparable accuracies. It is necessary to compare their published specs for positioning repeatability, positioning accuracy, running parallelism, backlash, and starting torque.
Aspects of a linear actuator that affect its precision include how true its guide rail and its raceways are, and how smoothly in the block and in the raceways the balls recirculate. At travel lengths of 4 ft. and under, the slightest deflection or clearance of the recirculating balls can significantly affect accurate movement and positioning. In this size range, for optimum accuracy, it is critical that the guide rail be precision ground. The same can be said of the slide block and ball screw itself. Furthermore, to ensure positional accuracy, the balls within the ball grooves of the raceways must not have clearance that allows them to deflect.
Of the groove designs on the market, the standard choice is between balls that make contact with the raceway grooves at two points, or at four points. A slightly elliptical groove design allows the balls to make contact at two opposing points but allows a bit of clearance on the balls' sides that are perpendicular to the contact points. The four-point contact arch design (called a Gothic arch) eliminates any clearance that could lead to deflection. Therefore, the four-point design is best suited for applications requiring maximum precision.

6. Rigidity
Ball screw actuator rigidity is affected, primarily, by the composition of the guide rail. As the outer structure of the system, this is the actuator's support. Its rigidity determines how consistently true the grooves of the raceways are. The thickness and strength of the lower edges of the guide rail are critical to its rigidity. A U-shaped outer rail provides better rigidity against moment loads.
Guide rails positioned lower than the ball screw center also increase rail rigidity. When the recirculating balls' grooves are closer to the bottom of the rail, the block can carry heavier loads. In combination with the more rigid U-shaped style rail, this design even allows one-end supported applications because there's less deformation and better accuracy. Another advantage to guide rails positioned lower than the ball screw center is greater compactness. Moreover, the number of ball circuits also affects rigidity. Four ball circuits provide greater rigidity than two ball circuits, all things being equal (ball, guide rail, block, and ball screw).

7. Actuator sizing
Depending on the application, the speed at which the actuator must travel helps determine the length of the ball screw lead. The faster the desired travel time, the longer the lead must be. However, to achieve higher accuracy, it is best to use the shortest possible lead for the job.
There is a direct correlation of speed to length. For example, assuming the revolution of the motor is 50 rps, with a 20 mm lead the speed would be 1,000 mm/s, and with a 2 mm lead it would be 100 mm/s. The merit of a shorter lead is that it can move a heavier load using a smaller motor. But to achieve the same speed, the motor must be bigger if the lead is shorter.

8. Liquids and particulate matter in the environment
Ball screw actuator systems are typically available with metal covers. However the standard metal covers have gaps between the cover and the guide rails. This makes them unsuitable in environments where liquids or particulate matter could enter the system. Though usually a customized option, accordion-pleated bellows-type covers are available that are designed to be impervious to fluids and particulate matter.


Naoki Yamaguchi is assistant technical manager for NB Corporation of America in Hanover Park, IL. Reach him at naoki@nbcorporation.com

Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
September 2018
2018 Engineering Leaders under 40, Women in Engineering, Six ways to reduce waste in manufacturing, and Four robot implementation challenges.
GAMS preview, 2018 Mid-Year Report, EAM and Safety
June 2018
2018 Lubrication Guide, Motor and maintenance management, Control system migration
August 2018
SCADA standardization, capital expenditures, data-driven drilling and execution
June 2018
Machine learning, produced water benefits, programming cavity pumps
April 2018
ROVs, rigs, and the real time; wellsite valve manifolds; AI on a chip; analytics use for pipelines
Spring 2018
Burners for heat-treating furnaces, CHP, dryers, gas humidification, and more
August 2018
Choosing an automation controller, Lean manufacturing
September 2018
Effective process analytics; Four reasons why LTE networks are not IIoT ready

Annual Salary Survey

After two years of economic concerns, manufacturing leaders once again have homed in on the single biggest issue facing their operations:

It's the workers—or more specifically, the lack of workers.

The 2017 Plant Engineering Salary Survey looks at not just what plant managers make, but what they think. As they look across their plants today, plant managers say they don’t have the operational depth to take on the new technologies and new challenges of global manufacturing.

Read more: 2017 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Material Handling
This digital report explains how everything from conveyors and robots to automatic picking systems and digital orders have evolved to keep pace with the speed of change in the supply chain.
Electrical Safety Update
This digital report explains how plant engineers need to take greater care when it comes to electrical safety incidents on the plant floor.
IIoT: Machines, Equipment, & Asset Management
Articles in this digital report highlight technologies that enable Industrial Internet of Things, IIoT-related products and strategies.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
Design of Safe and Reliable Hydraulic Systems for Subsea Applications
This eGuide explains how the operation of hydraulic systems for subsea applications requires the user to consider additional aspects because of the unique conditions that apply to the setting
click me