Effective energy management  saves money, the environment

Energy can be effectively managed through a thorough examination of a plant's process or processes

05/01/2009


Energy costs can be lowered in many ways, and using components such as high-efficiency motors and variable-frequency drives to do so are good starts to any energy-management program. But real success can be derived from taking a broad view and looking beyond these established methods. How else can energy be effectively managed to create savings and optimize production?
What it takes is a thorough examination of a plant's process or processes. It also requires committed leadership, good decision making and consistent oversight to address the outcome of that examination. Fortunately, simple and effective energy management strategies typically share six common components.

Step 1: Authoritative leadership
The optimal energy management program is a broad-based, multidisciplinary effort requiring a sustained commitment. The program driver must have an interest in profit and loss and must have the authority to implement change. The goal here is long-term operating efficiency rather than short-term savings, so it makes sense that the program champion should come from plant management. Successful programs are typically spearheaded by a corporate energy czar, or a plant manager with support from senior management to help drive the program forward.

Step 2: Look beyond first cost
The problem that short-circuits many programs is that they often require an increased investment in upgraded systems or components in order to achieve energy savings. However, as the saying goes, you have to spend money to make money. The purchase price of a motor typically represents only 2% of its total lifecycle cost. Most of a motor's total cost of ownership - 97% - goes toward operating energy.
Problems looking beyond the first cost arise when stakeholders are not able to appreciate the benefits of the improved technology. Here is where a strong program leader can educate and align the vision of the team toward a unified, long-term viewpoint. When the vision is clear and system specifications are established (for example, for high- efficiency gearboxes), conflict between plant engineers, purchasing agents and others is minimized. Each can do their job to contribute.

Step 3: Make good component decisions
Users could be making a good or bad energy management decision any time components are replaced or specified. Most of today's energy-efficient products pay for themselves over time, but it's important to check the numbers based on the projected use and lifecycle of the component.
Making the switch to premium- efficiency motors is a great place to start, but users can also realize considerable return on investment by making good decisions in other areas. Taking advantage of energy- efficient gearboxes, belts, synthetic lubricants and LED lighting technology where appropriate can bring considerable savings to energy management efforts.

Step 4: Optimize and right-size systems
Familiar equipment commonly found in manufacturing facilities such as blowers, pumps, air compressors, hydraulic systems, dust collectors and chillers are often taken for granted. The question is, do they follow best practices based on current energy standards? Each of these systems can usually be optimized without difficulty, often with support from the distributor or equipment manufacturer.
Be sure that systems are right-sized as well. Over-sizing equipment is a common affliction based on a "just to be sure" philosophy. Over-sizing is actually an accumulative process brought about by "designing for future capacity," or through design uncertainty, leading to the use of additional safety factors. Someone with a practical perspective on manufacturing requirements should watch over the process to ensure the final system is properly sized.

Step 5: Run equipment on demand
Walk through any plant without a vision for energy management and one will see equipment running without doing work. Duty cycle - the amount of time equipment is actually working divided by total operating time - can reach levels as low as 25%. The fix for this is simple: turn equipment off or slow it down when it is not doing work.
Using fixed-speed motors and then regulating their output with mechanical devices is like running your home furnace continuously and opening windows to regulate the temperature in the house. Adding VFDs to fixed-speed systems and running equipment on demand are two simple ways to significantly reduce energy costs in manufacturing.

Step 6: Monitor maintenance
Improper maintenance can erode the bottom line of an energy management program. Dirty air filters add load to fan motors, and compressed air systems can develop leaks over time. Improperly tensioned and aligned V-belts can reduce transfer efficiency from 97% to 88%.
While it's helpful to divide energy management programs into six basic elements, it's impossible for them not to be intertwined - and the benefits are cumulative. In the end, successful programs will drive all the elements with authority, and with the knowledge that the best return will come from a coordinated and sustained effort.

Ted Clayton is an automation program manager for Kaman Industrial Technologies.

Visit PlantEngineering.com for a case study on an energy management program centered on motor management and implemented by Kodak. Keyword: Kodak





Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
July/Aug
GAMS preview, 2018 Mid-Year Report, EAM and Safety
June 2018
2018 Lubrication Guide, Motor and maintenance management, Control system migration
May 2018
Electrical standards, robots and Lean manufacturing, and how an aluminum packaging plant is helping community growth.
April 2018
2017 Product of the Year winners, retrofitting a press, IMTS and Hannover Messe preview, natural refrigerants, testing steam traps
August 2018
SCADA standardization, capital expenditures, data-driven drilling and execution
June 2018
Machine learning, produced water benefits, programming cavity pumps
April 2018
ROVs, rigs, and the real time; wellsite valve manifolds; AI on a chip; analytics use for pipelines
Spring 2018
Burners for heat-treating furnaces, CHP, dryers, gas humidification, and more
August 2018
Choosing an automation controller, Lean manufacturing
February 2018
Setting internal automation standards

Annual Salary Survey

After two years of economic concerns, manufacturing leaders once again have homed in on the single biggest issue facing their operations:

It's the workers—or more specifically, the lack of workers.

The 2017 Plant Engineering Salary Survey looks at not just what plant managers make, but what they think. As they look across their plants today, plant managers say they don’t have the operational depth to take on the new technologies and new challenges of global manufacturing.

Read more: 2017 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Material Handling
This digital report explains how everything from conveyors and robots to automatic picking systems and digital orders have evolved to keep pace with the speed of change in the supply chain.
Electrical Safety Update
This digital report explains how plant engineers need to take greater care when it comes to electrical safety incidents on the plant floor.
IIoT: Machines, Equipment, & Asset Management
Articles in this digital report highlight technologies that enable Industrial Internet of Things, IIoT-related products and strategies.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me