Cooling high-power VFD cabinets in harsh environments

Variable frequency drives (VFDs) have many benefits, which makes it critical to explore strategies to achieve maximum efficiency.


Illustrated here is a medium-voltage drive cabinet. Courtesy: Advanced Cooling TechnologiesVariable frequency drives (VFDs) provide power and control to large and small commercial and industrial motors, and they must be thermally protected appropriate to their designs and environments. The key benefits of VFDs are the flexible control, smooth start and stop performance, and significant energy savings for centrifugal fans and pumps operating at variable loads. Most high-power VFDs and their complimentary suite of electronics are integrated into electronic enclosures as shown in Figure 1.

VFDs improve system efficiencies and also are very efficient devices themselves with losses of 2 to 4%. However, even these inefficiencies create kilowatts to tens of kilowatts of waste heat that must be dissipated as a result of the high amount of electrical power that is converted in high-power drives.

Dissipating this heat in an open air-cooled cabinet is straightforward. However, in harsh environments, which preclude filter fan-cooling or direct flow through air-cooling, thermal management for the enclosures becomes an important part of the design process. It's critical to explore a strategy for efficiently, passively, and cost-effectively cooling medium and high-power sealed enclosure VFDs in harsh environments to achieve maximum efficiency.

Flow through systems versus sealed enclosures

As shown in Figure 2, open airflow cabinets allow ambient air to flow through the cabinet and efficiently cool high-power modules directly. This efficient cooling may allow external contaminants into the enclosure, which are often minimized by using fan filter systems that filter the air flowing into the cabinet. The filters help reduce dust and debris, but they require maintenance cycles to clean or replace the filters.

Two photos illustrate flow through, fan filter system and sealed enclosure cooler airflow diagrams. Courtesy: Advanced Cooling TechnologiesSealed enclosures do not allow external air to flow through the cabinet, they use the air inside the cabinet to cool the electronics and exchange heat to external air through a heat exchanger. Sealed enclosures prevent dirt, dust, humidity, salt fog, and other airborne corrosive agents from entering the cabinet and impacting the life of the electronic components.

Either system works well for low-power cabinets. However, for many high-power VFD cabinets, the power dissipations levels are higher than what can be achieved with air cooling. Lower power components are often cooled by direct airflow and the higher power components are cooled directly or indirectly by facility cooling water, vapor compression systems, or pumped liquid systems. In these systems, the high-power components (insulated-gate bipolar transistors (IGBTs), integrated gate commutated thyristors (IGCTs), silicon-controlled rectifiers (SCRs) etc.) are typically attached to a fluid-cooled cold plate. The fluid then dissipates the heat to ambient air using a vapor compression system or through a liquid-to-air heat exchanger.

In either case, the required ambient air-heat exchangers can be located inside or outside of the facility. The main drawback to these systems are the challenges associated with introducing fluid into the cabinets and hard plumbing coolant lines to and from the cabinets.

Loop thermosyphons as an alternative to active liquid cooling

Loop thermosyphons (LTS) are gravity-driven, two-phase cooling devices. They operate in a similar manner to a heat pipe, in so far as a working fluid is evaporated and condensed in a closed loop to transfer heat over a given distance. The main benefit of LTS over heat pipes is their capability to efficiently transfer high power over long distances using dielectric working fluids. Compared to active liquid cooling, vapor compression, or pumped two-phase cooling systems, loop thermosyphons have no moving parts, and higher reliability. LTS are well-suited for transferring high power waste heat from the power electronics in a cabinet to a heat sink external to the cabinet, as shown in Figure 3.

These two photos are LTSs with air-cooled condensers. Figure 3a is a multi-device with 10 kW LTS and 3b is a single device with 1 kW LTS. Courtesy: Advanced Cooling TechnologiesThese two photos are LTSs with air-cooled condensers. Figure 3a is a multi-device with 10 kW LTS and 3b is a single device with 1 kW LTS. Courtesy: Advanced Cooling Technologies

The cabinet-level benefits of LTS cooling systems are significant. The cabinet, electronics, and cooling system can be installed into a sealed, standalone enclosure at the panel shop. Each cabinet is self-contained and can be delivered and easily installed at the end customer. The simplest integration of this concept is an air-cooled LTS condenser located on top of the cabinet, as shown in Figure 3. This allows the cabinet to be standalone and only needs electrical connections at the final installation.

The LTS condenser also can be connected to a facility or chilled water system. This allows for the waste heat to be dissipated further from the cabinet and multiple cabinets to operate on one loop. With an LTS and chilled-water condenser, plumbing and water connections are external to the cabinet, separating the coolant and electronics. 

LTS and sealed enclosure heat exchangers

An LTS is an excellent way to remove high powers directly from the higher dissipation components. Residual heat loads from secondary devices still need to be cooled. These secondary components consist of many lower-powered devices dispersed throughout the cabinet, which makes direct contact cooling difficult. For these lower power, lower heat flux components, direct air cooling is the most practical approach. Lower power components can be cooled easily by an air-to-air heat exchanger while maintaining the sealed integrity of the enclosure.

This LTS has an air-to-air heat exchanger. Courtesy: Advanced Cooling TechnologiesIn a combined LTS/sealed air-to-air heat exchanger combination, the high power IGBTs or IGCTs mount to the LTS cold plate and their 10 kW plus heat loads are dissipated via the LTS to the external cabinet air (Figure 4). All of the secondary electronics are cooled via a sealed air-to-air heat exchanger that can dissipate 1 kW or so of waste heat.

The LTS and the sealed air-to-air heat exchanger maintain the original NEMA cabinet rating. The combination of the LTS and sealed enclosure heat exchanger combination allows high-power cabinets to remain sealed against external airflow and does not require liquid coolant flow within the cabinet.

LTS and sealed enclosure coolers provide many benefits to power electronics cooling applications. An LTS passively provides the removal of the large amounts of heat dissipated by high power electronics components, using dielectric working fluids that are well suited for medium- and high-voltage applications. Sealed enclosure coolers can remove the heat from the lower power, distributed components found in power electronics cabinets, while preventing the contaminants found in outside air from interacting with these components. The combination of the two cooling solutions provides, reliable, passive cooling of high-power motor controllers in sealed enclosures required for harsh operating environments.

Scott Garner is the vice president of strategic product development; Devin Pellicone is a lead engineer; and Richard Bonner is the manager of the custom products group at Advanced Cooling Technologies. Edited by Emily Guenther, associate content manager, Control Engineering, CFE Media,


KEYWORD: Enclosure cooling, VFD cooling

  • VFD cooling options
  • Cooling with loop thermosyphons (LTSs) and sealed enclosures.

Consider this

Which cooling designs fit your enclosed equipment applications?

Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
November 2018
2018 Product of the Year finalists, mild steel welding: finding the right filler, and new technique joins aluminum to steel.
October 2018
Tools vs. sensors, functional safety, compressor rental, an operational network of maintenance and safety
September 2018
2018 Engineering Leaders under 40, Women in Engineering, Six ways to reduce waste in manufacturing, and Four robot implementation challenges.
October 2018
2018 Product of the Year; Subsurface data methodologies; Digital twins; Well lifecycle data
August 2018
SCADA standardization, capital expenditures, data-driven drilling and execution
June 2018
Machine learning, produced water benefits, programming cavity pumps
Summer 2018
Microgrids and universities, Steam traps and energy efficiency, Finding help with energy projects
October 2018
Complex upgrades for system integrators; Process control safety and compliance
November 2018
Analytics quantify processes, Fieldbus networking and IIoT, Choosing the right accelerometer

Annual Salary Survey

After two years of economic concerns, manufacturing leaders once again have homed in on the single biggest issue facing their operations:

It's the workers—or more specifically, the lack of workers.

The 2017 Plant Engineering Salary Survey looks at not just what plant managers make, but what they think. As they look across their plants today, plant managers say they don’t have the operational depth to take on the new technologies and new challenges of global manufacturing.

Read more: 2017 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Material Handling
This digital report explains how everything from conveyors and robots to automatic picking systems and digital orders have evolved to keep pace with the speed of change in the supply chain.
Electrical Safety Update
This digital report explains how plant engineers need to take greater care when it comes to electrical safety incidents on the plant floor.
IIoT: Machines, Equipment, & Asset Management
Articles in this digital report highlight technologies that enable Industrial Internet of Things, IIoT-related products and strategies.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
Design of Safe and Reliable Hydraulic Systems for Subsea Applications
This eGuide explains how the operation of hydraulic systems for subsea applications requires the user to consider additional aspects because of the unique conditions that apply to the setting
click me