Considerations for using VFDs with standard motors

End users desire speed and/or torque control procure and install VFDs to modify existing applications where a standard-induction motor is in place. There are a few areas of concern involving misapplication of a standard induction motor.

12/02/2016


Motors that meet the requirements of NEMA: MG1 Part 31 are designed for use with variable-frequency drives (VFDs). Motors that meet the requirements of NEMA: MG1 Part 30 may be suitable for inverter duty if appropriate measures are taken such as line conditioning. End users desiring speed and/or torque control often procure and install VFDs to modify existing applications where a standard-induction motor is in place. Frequently, they try to control costs by using the existing motor. There are a few areas of concern involving misapplication of a standard induction motor.

Motors meeting the requirements of NEMA Std. MG 1, Part 31, have defined speed-torque characteristic. Courtesy: EASAAn induction motor with fixed voltage applied to machine terminals results in acceleration according to the machine dynamics. Courtesy EASA

Speed-torque characteristics

Motors meeting the requirements of NEMA: MG 1 Part 31 have defined speed-torque characteristics which is shown in Figure 1. Figure 2 shows a typical speed-torque curve for an induction motor with fixed voltage applied to the machine terminals that results in acceleration, according to the machine dynamics. Point 3 in Figure 2 represents the speed at rated or full-load torque and corresponds to Point 3 in Figure 1. Using a standard induction motor with a VFD without proper evaluation to determine Points 1, 2, and 4 from Figure 1 introduces the potential for overheating in the lower speed range (below Point 3) and mechanical damage from over speeding (beyond Point 3).

Shaft currents

Shaft currents are another major concern. The high-switching frequency associated with inverter operation produces a capacitive coupling between the rotor and stator, which can lead to shaft currents that damage the bearings and lubricant. Motors designed for this type of operation are often constructed with insulated bearings and shaft-grounding brushes. These modifications can often be made to standard motors.

End users desiring speed and/or torque control procure and install VFDs to modify existing applications where a standard-induction motor is in place. There are a few areas of concern involving misapplication of a standard induction motor. Courtesy: EASAStandard-induction motor stator windings usually are not insulated for use in VFD applications. Most machines designed for inverter duty use a modified magnet wire. The ground insulation may also be enhanced, and more robust coil bracing is common.

Installation

It's important to establish a low-impedance, common ground between the motor drive and electrical system. Cable manufacturers have designed products specifically for this purpose (see Figure 3).

Mike Howell, EASA Technical Support SpecialistService centers can modify existing machines to address potential issues with bearing insulation and stator-winding insulation. However, defining a speed-torque curve to a standard motor, as shown in Figure 1, isn't an easy task. Variable-torque loads such as fans and centrifugal pumps,are less risky candidates, providing the maximum operating speed doesn't exceed the motor's base speed. Constant-torque loads like conveyor belts would be more susceptible to overheating in the low-speed range. The most conservative approach is to procure an inverter-duty motor that's appropriate for the application. If the goal is just to limit starting current, a simpler option is a variable-voltage, fixed-frequency soft starter.

-Mike Howell is a technical support specialist at the Electrical Apparatus Service Association (EASA). EASA is a CFE Media content partner. 



Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
June 2018
2018 Lubrication Guide, Motor and maintenance management, Control system migration
May 2018
Electrical standards, robots and Lean manufacturing, and how an aluminum packaging plant is helping community growth.
April 2018
2017 Product of the Year winners, retrofitting a press, IMTS and Hannover Messe preview, natural refrigerants, testing steam traps
June 2018
Machine learning, produced water benefits, programming cavity pumps
April 2018
ROVs, rigs, and the real time; wellsite valve manifolds; AI on a chip; analytics use for pipelines
February 2018
Focus on power systems, process safety, electrical and power systems, edge computing in the oil & gas industry
Spring 2018
Burners for heat-treating furnaces, CHP, dryers, gas humidification, and more
April 2018
Implementing a DCS, stepper motors, intelligent motion control, remote monitoring of irrigation systems
February 2018
Setting internal automation standards

Annual Salary Survey

After two years of economic concerns, manufacturing leaders once again have homed in on the single biggest issue facing their operations:

It's the workers—or more specifically, the lack of workers.

The 2017 Plant Engineering Salary Survey looks at not just what plant managers make, but what they think. As they look across their plants today, plant managers say they don’t have the operational depth to take on the new technologies and new challenges of global manufacturing.

Read more: 2017 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Electrical Safety Update
This digital report explains how plant engineers need to take greater care when it comes to electrical safety incidents on the plant floor.
Maintenance & Safety
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
IIoT: Machines, Equipment, & Asset Management
Articles in this digital report highlight technologies that enable Industrial Internet of Things, IIoT-related products and strategies.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me