Choose active solutions for power management

Using active load management allows users to cut energy costs by reducing the number or types of loads connected to the source of power or by shifting the energy consumption to a lower cost time period.

07/13/2009


Reduced energy costs are accomplished in a variety of ways. One solution is supply side management, which reduces costs through utility rate structure optimization, load aggregation, penalty avoidance and bill verification. These methods do not reduce energy consumption but, instead, ensure that energy is consumed using the provider's lowest cost of energy.
The second technique modifies the process to consume energy more efficiently. Methods include using adjustable frequency drives instead of using valves or dampers; using higher efficiency motors, pumps, transformers or changing process configurations such as using new boiler control algorithms; maintaining a compressed air leak management program; capturing and reusing waste heat; or improving vessel or building insulation.
A third energy reduction cost technique uses measurement systems to track production of a process, measure the ratio of production quantity to energy consumption and trend this ratio as a process efficiency and compare this value to best case efficiency benchmarks. As is done with statistical process control and statistical quality control, deviations from baseline identify when process efficiencies are declining.

Active load management
Using active load management allows users to cut energy costs by reducing the number or types of loads connected to the source of power or by shifting the energy consumption to a lower cost time period. Active load management seldom makes sense unless the total costs associated with reducing or shifting loads to another time period are more than offset by savings from a reduction in energy cost from that load change.
Reducing load almost always implies reducing output, at least for a certain time window, but it also can involve shifting the energy use to a more advantageous time - a time when energy costs are lower. A well thought out return on investment analysis on a load shed/load shifting system includes not only those reduced energy costs, but must include costs associated with installation of any equipment to perform the load reduction, including the new costs associated with maintenance of the system after this new load management is implemented. You may find that the increased maintenance costs for the new load reduction system are more than offset by the lower maintenance costs associated with the less frequently or less heavily loaded equipment, resulting in longer life of the equipment. Longer equipment life lowers long term capital requirements to operate a process.
Examples of active load management are practically endless, but include:
• Building work-in-process inventory or batches during times other than when a new peak demand would have been established
• Performing pre-heating, pre-filling, pre-loading, pre-processing, pre-cooling or some other preparatory step outside of when a new peak demand would be established
• Using logic or enforced procedures to prevent simultaneous starting or restarting of machinery, or operation of equipment during certain times of the day, days of the week, seasons of the year or when facility load is above certain preset limits; restarting equipment at the end of breaks or lunch periods can cause spikes in demand
• Reducing production rate, or changing to a less energy intensive operating mode during times of high energy cost or peak demand periods
• Installing or programming a load shed system to disable lower priority loads during times of high energy cost
• Using sine-wave form-shaping technology to reduce energy consumed from fluorescent lighting without appreciably reducing light output
• Switching loads over to alternative, renewable, energy storage systems or other non-utility backup power sources
• Outsourcing energy intensive portions of the manufacturing process to outside vendors.

Energy saved through active load reduction will not only reduce your energy bill, but that energy can be contracted to be sold back to the energy provider as part of a demand response program. Receipt of an annual payment from your energy provider comes once you agree and are qualified to shed the contracted power, regardless of whether the energy provider calls for a load shed that year or not.
A key feature of any load shed system is the ability to know when to reduce energy. Such a system must accurately measure present consumption, convert this to a cost and provide you with pre-programmed, predictive "what-if" models that will allow you to make the decision whether to shed and how much to shed. Load management is justified when the savings of predicted energy usage more than exceeds the consequence of shedding that load.

Dave Loucks is a solution manager for Eaton Corp. He has more than 30 years of experience in electrical distribution systems design.





Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
October 2018
Tools vs. sensors, functional safety, compressor rental, an operational network of maintenance and safety
September 2018
2018 Engineering Leaders under 40, Women in Engineering, Six ways to reduce waste in manufacturing, and Four robot implementation challenges.
July/Aug
GAMS preview, 2018 Mid-Year Report, EAM and Safety
October 2018
2018 Product of the Year; Subsurface data methodologies; Digital twins; Well lifecycle data
August 2018
SCADA standardization, capital expenditures, data-driven drilling and execution
June 2018
Machine learning, produced water benefits, programming cavity pumps
Spring 2018
Burners for heat-treating furnaces, CHP, dryers, gas humidification, and more
October 2018
Complex upgrades for system integrators; Process control safety and compliance
September 2018
Effective process analytics; Four reasons why LTE networks are not IIoT ready

Annual Salary Survey

After two years of economic concerns, manufacturing leaders once again have homed in on the single biggest issue facing their operations:

It's the workers—or more specifically, the lack of workers.

The 2017 Plant Engineering Salary Survey looks at not just what plant managers make, but what they think. As they look across their plants today, plant managers say they don’t have the operational depth to take on the new technologies and new challenges of global manufacturing.

Read more: 2017 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Material Handling
This digital report explains how everything from conveyors and robots to automatic picking systems and digital orders have evolved to keep pace with the speed of change in the supply chain.
Electrical Safety Update
This digital report explains how plant engineers need to take greater care when it comes to electrical safety incidents on the plant floor.
IIoT: Machines, Equipment, & Asset Management
Articles in this digital report highlight technologies that enable Industrial Internet of Things, IIoT-related products and strategies.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
Design of Safe and Reliable Hydraulic Systems for Subsea Applications
This eGuide explains how the operation of hydraulic systems for subsea applications requires the user to consider additional aspects because of the unique conditions that apply to the setting
click me