Chemical plant blast: Inherent safety

What went wrong: A new safety video is out that looks at inherent safety which is the result of the August 28, 2008, explosion that killed two workers and injured eight others at the Bayer CropScience chemical plant in Institute, W.V.

08/01/2012


ISS SourceWhat went wrong: A new safety video is out that looks at inherent safety which is the result of the Aug. 28, 2008, explosion that killed two workers and injured eight others at the Bayer CropScience chemical plant in Institute, W.V.

As a result of ongoing concern regarding the safety of the facility Congress directed the U.S. Chemical Safety Board (CSB) to commission the National Academy of Sciences (NAS) to study the feasibility of reducing or eliminating the inventory of methyl isocynanate (MIC) stored at the Bayer plant.

The video, entitled “Inherently Safer: The Future of Risk Reduction” explores the concept of “Inherent Safety” and could apply at the Bayer facility. The NAS panel noted the goal of inherently safer design is not only to prevent an accident, but to reduce the consequences of an accident should one occur. The video features interviews with NAS panel members and staff as well as commentary from the CSB Chair and investigators.

“The first choice after an accident is to ask how can we improve the disaster so it can’t happen again,” said industry expert and Texas A+M professor Trevor Kletz. “Very often we can change the design very cheaply and very easily, but people don’t do it, they don’t see it.”

The video discusses the findings from the CSB’s investigation and the catastrophic consequences the 2008 accident could have had on the surrounding community.

“The CSB determined that the explosion at Bayer could have caused a release of MIC into the nearby community,” said CSB Chairperson Rafael Moure-Eraso. “And it raised a question – was there an inherently safer alternative to storing and using this highly toxic chemical?”

The NAS report found while Bayer and previous owners of the site incorporated some considerations of inherently safer technology, these companies “did not perform systematic and complete inherently safer process assessments on the processes for manufacturing MIC or the carbamate pesticides at the Institute site.” Thus large amounts of MIC, phosgene, and other toxic materials ended up produced or stored at the site for decades.

There are four main components of inherently safer design as identified by the NAS study. They are substitute, minimize, moderate and simplify.

  • Substitute: Replacing one material with another that is less hazardous
  • Minimize: Reducing the amount of hazardous material in the process
  • Moderate: Using less hazardous process conditions such as lower pressures or temperatures
  • Simplify: Designing processes to be less complicated, and therefore less prone to failure.

“Inherently safer design is a philosophy for design and operation of any technology, including chemical processing,” said industry expert Dennis Hendershot. “It’s not a specific technology or a set of tools and activities, but it’s really an approach to design and it’s a way of thinking.”

On March 18, 2011, Bayer said it would not restart MIC production at the plant and would end the manufacturing of carbamate pesticides deemed hazardous by the World Health Organization. The Bayer plant no longer produces or stores MIC.

The CSB said the NAS study and other publications show how the chemical industry could benefit from incorporating the principles of inherently safer design into making decisions – decisions which will satisfy the interests of chemical companies, workers, and members of the communities near their plants.



Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2017 Top Plant.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
May 2018
Electrical standards, robots and Lean manufacturing, and how an aluminum packaging plant is helping community growth.
April 2018
2017 Product of the Year winners, retrofitting a press, IMTS and Hannover Messe preview, natural refrigerants, testing steam traps
March 2018
SCCR, 2018 Maintenance study, and VFDs in a washdown environment.
April 2018
ROVs, rigs, and the real time; wellsite valve manifolds; AI on a chip; analytics use for pipelines
February 2018
Focus on power systems, process safety, electrical and power systems, edge computing in the oil & gas industry
December 2017
Product of the Year winners, Pattern recognition, Engineering analytics, Revitalize older pump installations
Spring 2018
Burners for heat-treating furnaces, CHP, dryers, gas humidification, and more
April 2018
Implementing a DCS, stepper motors, intelligent motion control, remote monitoring of irrigation systems
February 2018
Setting internal automation standards

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Maintenance & Safety
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
Industrial Analytics
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
IIoT: Operations & IT
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me