CERN Project Targets Safety and Environment

CERN, the European Organization for Nuclear Research, is home to the Large Hadron Collider (LHC), a particle accelerator used by physicists to study the fundamental building blocks of all things. LHC is the result of collaboration between 10,000+ scientists and engineers representing 500 academic institutes, laboratories, educational institutions and industrial companies worldwide.


CERN, the European Organization for Nuclear Research, is home to the Large Hadron Collider (LHC), a particle accelerator used by physicists to study the fundamental building blocks of all things. LHC is the result of collaboration between 10,000+ scientists and engineers representing 500 academic institutes, laboratories, educational institutions and industrial companies worldwide.

Accelerator operation involves nuclear interactions between high-energy particles, which create ionizing-radiation fields, so constant reporting on radiation levels as well as on air and water quality is required. In addition, the system must adhere to IEC 61508 safety standards. CERN invested in a state-of-the-art radiation monitoring and alarming system for the LHC, known as The Radiation Monitoring System for the Environment and Safety (RAMSES).

RAMSES integrates monitoring and control functions for CERN
RAMSES integrates monitoring and control functions for CERN's Large Hadron Collider experiment.

RAMSES’ functional requirements include:

Monitoring radiation levels (on-line, local and remote displays) — Monitoring of ambient dose equivalent rates in the working environment from stray radiation or induced activity, and measurement of radioactivity in released air and water;

Alarm functions (local and remote) — radiation-level alarms based on ambient dose equivalent rates, technical alarms, and interlocks;

Long-term permanent and reliable data logging — measured values, events (radiation alarms, interlocks, system fault alarms, technical alarms), and system configuration and modifications.

CERN has designed its industrial automation project to do away with any silos of automation in order to create a completely integrated data environment that will result in a central communications center. This center also manages the conventional monitoring of water (pH, temperature, conductivity, and turbidity), air quality, wind speed and direction, and provides ambient dose equivalent and ambient dose equivalent rate measurements in the LHC underground areas and above ground, both inside and outside the CERN perimeter.

The system is comprised of approximately 300 radiation and environmental detectors (about 700 measurement channels) grouped into 150 monitoring stations. The hundreds of detectors are integrated with Siemens S7-200 PLCs and use Kepware’s OPC server technology, KEPServerEX, to achieve enhanced data exchange between OPC Clients and the PLCs. KEPServerEx’s Modbus driver is used to communicate with the Integrated Monitoring Station (IMS) which controls the hand and foot monitors (HFM), tools and material controller (PCM) and the site gate monitor (SGM).

Monitoring stations are comprised of a PLC and a touch panel that monitors measured values and alarms from the PLCs and generates plain text data files that are copied to the supervisory servers (SCADA servers). The servers 'inject’ the data into an Oracle relational database via the Oracle SQL Loader.

The communications system has become an integral facilitator of the exchange of data, providing seamless connectivity between the PLC protocols (Siemens and Modbus), the SCADA system (ARC Informatique’s PCVue) and the Oracle database. Due to the importance of the RAMSES system and its round-the-clock operation, reliability became the most important factor in the communication system. The error handling and diagnostics of the Kepware communications ensures the overall data integrity and reliability of the system.

It’s estimated that by the conclusion of the RAMSES project in the spring of 2009, CERN will have gained significant regulatory compliance, safety and administrative efficiencies by creating one centralized monitoring system.

Author Information
Roy Kok is vice president of sales and marketing at Kepware. Contact him by email at .

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Pipe fabrication and IIoT; 2017 Product of the Year finalists
The future of electrical safety; Four keys to RPM success; Picking the right weld fume option
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Control room technology innovation; Practical approaches to corrosion protection; Pipeline regulator revises quality programs
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Power system design for high-performance buildings; mitigating arc flash hazards
VFDs improving motion control applications; Powering automation and IIoT wirelessly; Connecting the dots
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me