Brushless dc motors: More power from a smaller package

Today’s brushless dc motors and gearmotors combine many of the best features of both ac and dc drive systems. Just like ac motors, brushless dc motors eliminate brush maintenance, dust and brush-generated electromagnetic interference.

04/15/2008


Today’s brushless dc motors and gearmotors combine many of the best features of both ac and dc drive systems. Just like ac motors, brushless dc motors eliminate brush maintenance, dust and brush-generated electromagnetic interference. In addition, brushless dc motors provide a much wider speed range than inverter-driven ac motors. Brushless dc motors also run more quietly than their brush-type counterparts. Moreover, brushless motor construction makes the motors more thermally efficient, resulting in greater power from a smaller package.

Taken together, these benefits equate to longer life for a brushless motor than for a comparable permanent magnet dc motor. Compared to inverter-driven ac motors, brushless dc motors provide the same long-standing performance advantages of their brush-type counterparts:

  • Higher starting torque Predictable performance (a linear speed-torque curve)

  • Wider speed range

  • Ability to run from a wide range of power supply voltages.

    • Because brushless dc motors are constructed with magnets, bearings, laminations, shields and processes similar to many widely available PMDC motors, they typically compare favorably in cost to PMDC motors. With the cost of controls continuing to go down, some OEMs are even finding it cost effective to swap brushless dc systems for older brush-type designs (see Brushless dc motors become increasingly common).

      Designers are also increasingly taking advantage of the special performance capabilities inherent in the brushless dc design to substitute them for more costly high-end servomotors. Inverter-driven ac motors have also been used to replace older brush-type designs. However they lack the wide speed range of brushless dc motors.

      Hybrid of ac, dc designs

      AC induction motors were the earliest motors to be commercially available. Typically, these motors have cast aluminum rotors and windings on the outside that induce current in the rotor to create the electromagnetic fields necessary for rotor movement. As electronics and magnet technology progressed, brush-type PMDC motors appeared. These motors reverse the design of ac motors %%MDASSML%% the windings are on the rotor (called the armature) and permanent magnets or field windings are on the outside.

      The brushes are pieces of carbon-copper composite graphite that rub on a portion of the rotor, called the commutator, to electrically connect it to the power source. The commutator segments are located so that as the rotor turns, current flows in the proper direction in the rotor winding to keep the motor going in the desired direction.

      Brushless dc motors are a combination of the two. Winding construction in a brushless dc motor is similar to that of a three-phase ac motor. The major difference between ac and brushless dc motors is in rotor construction: the rotor consists of magnetized permanent magnet segments. In addition, the brushless dc motor requires position sensors such as encoders or Hall-effect sensor devices. These sensors provide electrical signals the control uses to sequentially energize the three-phase windings to produce maximum rotor torque and desired direction of rotation.

      Using brushless gearmotors and motors

      Motion-control applications run the gamut from fans to machine tools. The best type of motor is often obvious. For example, an inexpensive ac induction motor normally drives a fixed-speed fan. Conversely, a high-speed profiler normally requires a high-performance multi-axis servo control system. Brushless dc motors can often be used for applications that fall somewhere between those two extremes. In general, brushless dc motors can frequently be used for velocity and positioning applications.

      A velocity application is one in which the motor rotates to drive the load; the stopping position is not of major importance. Examples include fans, centrifuges and continuously-running conveyors. These applications often use conventional brushless dc motors because of their high-speed capability, high power relative to size and low maintenance.

      In a positioning application, the motor rotates to drive the load from point A to point B. Examples include garage door openers, supermarket check stands, parts elevators and pick-and-place robots. The first two examples often use conventional ac motors and limit switches or photoelectric sensors to control stopping position. Position tolerance is usually around

      With the recent development of cost-effective brushless dc motors with integrated drive electronics, and with the cost of brushless dc controllers continually falling, brushless dc motors will appear in more applications that once may have used conventional PMDC gearmotors, brush-type servomotors and ac inverter-duty motors.


      Author Information
      Mike Marhoefer is the manager of brushless dc technologies for Bodine Electric Co. An electronics engineer, Marhoefer joined the company in 1978 as a member of the research and development department. Recent projects include integration of the brushless dc gearmotor with drive and encoder electronics.


      Hall effect

      The Hall effect was discovered by physicist Dr. Edwin Hall in 1879 while he was a doctoral candidate at Johns Hopkins University in Baltimore. The Hall effect principle states that when a current-carrying conductor is placed into a magnetic field, a voltage will be generated perpendicular to both the current and the field.

      Source:



Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
September 2018
2018 Engineering Leaders under 40, Women in Engineering, Six ways to reduce waste in manufacturing, and Four robot implementation challenges.
July/Aug
GAMS preview, 2018 Mid-Year Report, EAM and Safety
June 2018
2018 Lubrication Guide, Motor and maintenance management, Control system migration
August 2018
SCADA standardization, capital expenditures, data-driven drilling and execution
June 2018
Machine learning, produced water benefits, programming cavity pumps
April 2018
ROVs, rigs, and the real time; wellsite valve manifolds; AI on a chip; analytics use for pipelines
Spring 2018
Burners for heat-treating furnaces, CHP, dryers, gas humidification, and more
August 2018
Choosing an automation controller, Lean manufacturing
September 2018
Effective process analytics; Four reasons why LTE networks are not IIoT ready

Annual Salary Survey

After two years of economic concerns, manufacturing leaders once again have homed in on the single biggest issue facing their operations:

It's the workers—or more specifically, the lack of workers.

The 2017 Plant Engineering Salary Survey looks at not just what plant managers make, but what they think. As they look across their plants today, plant managers say they don’t have the operational depth to take on the new technologies and new challenges of global manufacturing.

Read more: 2017 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Material Handling
This digital report explains how everything from conveyors and robots to automatic picking systems and digital orders have evolved to keep pace with the speed of change in the supply chain.
Electrical Safety Update
This digital report explains how plant engineers need to take greater care when it comes to electrical safety incidents on the plant floor.
IIoT: Machines, Equipment, & Asset Management
Articles in this digital report highlight technologies that enable Industrial Internet of Things, IIoT-related products and strategies.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
Design of Safe and Reliable Hydraulic Systems for Subsea Applications
This eGuide explains how the operation of hydraulic systems for subsea applications requires the user to consider additional aspects because of the unique conditions that apply to the setting
click me