Blueprint for building a skilled workforce

Manufacturing has changed. Jobs require more skill, training, and experience, especially in the use of technology. According to the U.S. Bureau of Labor Statistics, in 1950, 60% of manufacturing jobs were unskilled; today, only 30% are unskilled; by 2005, the number is expected to shrink to 15%. In addition, retirement-eligible workers are leaving manufacturing jobs in large numbers.


Manufacturing has changed. Jobs require more skill, training, and experience, especially in the use of technology. According to the U.S. Bureau of Labor Statistics, in 1950, 60% of manufacturing jobs were unskilled; today, only 30% are unskilled; by 2005, the number is expected to shrink to 15%.

In addition, retirement-eligible workers are leaving manufacturing jobs in large numbers. A study by the University of Michigan reports that the auto industry alone needs to find 250,000 workers by 2005 to replace retirees.

According to a recent U.S. Census Bureau survey, more than half of the responding companies cited the "need for better education and training" as one of the most significant barriers to the adoption of new technologies. And no wonder. The American Management Association reports that in 1999, almost 42% of manufacturing job applicants lacked the basic reading, writing, and math skills needed to do the jobs they were applying for.

Help is coming

Because ensuring the existence of a skilled workforce in the 21stCentury is perhaps the greatest challenge facing manufacturing today, the Manufacturing Skill Standards Council (MSSC) was formed in 1997 to address the challenge. MSSC brought together leaders representing companies, workers, educators, and related organizations to create a blueprint for a new skills pipeline in manufacturing. Since it is a unique partnership among education, industry, and labor, MSSC has been able to provide leadership in the creation of an industrywide skill standards system.

In May 2001, the MSSC released "A Blueprint for Workforce Excellence," a set of skill standards created to address the skills problem. More than 3800 frontline workers, 700 companies, 300 experts, and 30 facilitating organizations have participated in the development of the MSSC skill standards.

What are the skill standards

The skill standards represent the best practices for high-performance work and define the skills and knowledge required to ensure a skilled, mobile industrial workforce. This includes the research and national validation of the specific job functions in best-practice work sites — the indicators that tell when the job is completed successfully as well as the level of technical knowledge and skills need for the job.

There are three distinct levels of skill standards: core, concentration, and specialized. MSSC has developed standards for six concentration areas and has identified the core skills and knowledge that are common to all six concentrations. The concentration areas are:

  • Production

  • Health, safety, and environment assurance

  • Logistics and inventory control

  • Maintenance, installation, and repair

  • Production process development

  • Quality assurance

    • Uses of skill standards

      The skill standards can be used in many ways:

      • As a communications tool among companies, the education community, and current and future workers

      • In conjunction with existing training programs and apprenticeships

      • To benchmark manufacturing processes to best practices

      • To develop job descriptions

      • To enable companies to work with line managers, unions, and employees to conduct training needs analyses

      • To develop and/or improve training programs

      • To work with local schools to develop curricula and programs to prepare students for good manufacturing jobs.

        • Finally, the new skill standards form the foundation of a complete system that will include assessment and certification programs.

          MSSC skill standards concentration in maintenance, installation, and repair

          Definition: Ensure that the maintenance of the manufacturing system fulfills customer and business requirements. Install and repair equipment on the manufacturing floor.

          Sample jobs covered: Industrial maintenance mechanic, industrial maintenance electrician, and millright.

          Information about the work: This component describes what workers need to be able to do on the job to perform competently. It includes:

          Critical work functions - The major responsibilities of work within the maintenance, installation, and repair concentration.

          Key activities - The major duties or tasks involved in carrying out a critical work function.

          Performance indicators - Indicators of how to determine when someone is performing each key activity competently.

          Information about the worker: This aspect of the skill standards describes the knowledge and skills an individual needs to perform the work described in each critical work function, along with its key activities and performance indicators. There are three types of knowledge and skills:

          Academic knowledge and skills -Skills such as mathematics, reading, etc.

          Employability knowledge and skills - Broadly applicable skills such as working in teams, analyzing and solving problems, etc.

          Occupational and technical knowledge and skills - Skills that tend to be specific to an industry or concentration, such as skill using inspection tools and equipment, knowledge of manufacturing processes, etc.

          For each critical work function, the standards list key activities and the performance indicators associated with those activities. They also list skill categories and the specific knowledge and skills needed for each category.

          The MSSC Skill Standards can be viewed, printed, or ordered at

Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
October 2018
Tools vs. sensors, functional safety, compressor rental, an operational network of maintenance and safety
September 2018
2018 Engineering Leaders under 40, Women in Engineering, Six ways to reduce waste in manufacturing, and Four robot implementation challenges.
GAMS preview, 2018 Mid-Year Report, EAM and Safety
October 2018
2018 Product of the Year; Subsurface data methodologies; Digital twins; Well lifecycle data
August 2018
SCADA standardization, capital expenditures, data-driven drilling and execution
June 2018
Machine learning, produced water benefits, programming cavity pumps
Spring 2018
Burners for heat-treating furnaces, CHP, dryers, gas humidification, and more
October 2018
Complex upgrades for system integrators; Process control safety and compliance
September 2018
Effective process analytics; Four reasons why LTE networks are not IIoT ready

Annual Salary Survey

After two years of economic concerns, manufacturing leaders once again have homed in on the single biggest issue facing their operations:

It's the workers—or more specifically, the lack of workers.

The 2017 Plant Engineering Salary Survey looks at not just what plant managers make, but what they think. As they look across their plants today, plant managers say they don’t have the operational depth to take on the new technologies and new challenges of global manufacturing.

Read more: 2017 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Material Handling
This digital report explains how everything from conveyors and robots to automatic picking systems and digital orders have evolved to keep pace with the speed of change in the supply chain.
Electrical Safety Update
This digital report explains how plant engineers need to take greater care when it comes to electrical safety incidents on the plant floor.
IIoT: Machines, Equipment, & Asset Management
Articles in this digital report highlight technologies that enable Industrial Internet of Things, IIoT-related products and strategies.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
Design of Safe and Reliable Hydraulic Systems for Subsea Applications
This eGuide explains how the operation of hydraulic systems for subsea applications requires the user to consider additional aspects because of the unique conditions that apply to the setting
click me