Back to Basics: Closed-loop stability

Tutorial: Stability is how a control loop reduces errors between the measured process variable and its desired value or setpoint.

08/17/2010

For the purposes of feedback control, stability refers to a control loop’s ability to reduce errors between the measured process variable and its desired value or setpoint. A stable control loop will manipulate the process so as to bring the process variable closer to the setpoint, whereas an unstable control loop will maintain or even widen the gap between them.

With the exception of explosive devices that depend on self-sustained reactions to increase the temperature and pressure of a process exponentially, feedback loops are generally designed to be stable so that the process variable will eventually achieve a constant steady state after a setpoint change or a disturbance to the process.

Unfortunately, some control loops don’t turn out that way. The problem is often a matter of inertia – a process’s tendency to continue moving in the same direction after the controller has tried to reverse course.

Consider, for example, the child’s toy shown in the first figure. It consists of a
weight hanging from a vertical spring that the human controller can raise or lower by tugging on the spring’s handle. If the controller’s goal is to position the weight at a specified height above the floor, it would be a simple matter to slowly raise the
handle until the height measurement matches the desired setpoint.

Doing so would certainly achieve the desired objective, but if this were an industrial positioning system, the inordinate amount of time required to move the weight slowly to its final height would degrade the performance of any process that depends on the weight’s position. The longer the weight remains above or below the setpoint, the poorer the performance.

Moving the weight faster would address the time-out-of-position problem, but moving it too quickly could make matters worse. The weight’s inertia might cause it to move past the setpoint even after the controller has observed the impending overshoot and begun pushing in the opposite direction. And if the controller’s attempt to reverse course is also too aggressive, the weight will overshoot the other way.

Fortunately, each successive overshoot will typically be smaller than the last so that the weight will eventually reach the desired height after bouncing around a bit. But as anyone who has ever played with such a toy knows, the faster the controller moves the handle, the longer those oscillations will be sustained. And at one particular speed corresponding to the resonant frequency of the weight-and-spring process, each successive overshoot will have the same magnitude as its predecessor and the oscillations will continue until the controller gives up.

But if the controller were to become even more aggressive, those oscillations would grow in magnitude until the spring reaches its maximum distention or breaks. Such an unstable control loop might be amusing for a child playing with a toy spring, but it would be disastrous for a commercial positioning system or any other application of closed-loop feedback.

One solution to this problem would be to limit the controller’s aggressiveness by equipping it with a speed-sensitive damper such as a dashpot or a shock absorber as shown in the second figure. Such a device would resist the controller’s movements more and more as the controller tries to move faster and faster. The
derivative term in a PID controller serves the same function, though too much derivative damping can actually make matters worse.

See “Understanding Derivative in PID Control,” Control Engineering, February 2010.

See Tutorials Channel at www.controleng.com/tutorials.

Vance VanDoren, Ph.D., P.E., is Control Engineering consulting editor, at controleng@msn.com. www.controleng.com

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Pipe fabrication and IIoT; 2017 Product of the Year finalists
The future of electrical safety; Four keys to RPM success; Picking the right weld fume option
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Control room technology innovation; Practical approaches to corrosion protection; Pipeline regulator revises quality programs
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Power system design for high-performance buildings; mitigating arc flash hazards
VFDs improving motion control applications; Powering automation and IIoT wirelessly; Connecting the dots
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.