Automation transforms the plant, and is transformed in return

Not only has automation changed the way we manufacture goods, it has also changed the way we view the manufacturing process. In 1947, Yardeny Laboratories introduced the pulsing drive, which controlled the speed, direction and position of electric motors. Material was moved using overhead trolleys, belt conveyors and chain conveyors.

06/15/2007


Not only has automation changed the way we manufacture goods, it has also changed the way we view the manufacturing process.

In 1947, Yardeny Laboratories introduced the pulsing drive, which controlled the speed, direction and position of electric motors. Material was moved using overhead trolleys, belt conveyors and chain conveyors. Today, guided vehicles transport materials without human drivers. Robots connected via industrial networks assemble automobiles and transfer subassemblies between stations.

In the past, cars were produced in batches, running the same model and the same color, hoping consumers wanted the models and colors they made. Today, auto makers manufacture cars to order %%MDASSML%% in batches of one.


Automation also transformed electronic product manufacturing. Radios and TVs were once wired by hand; they're now assembled by pick-and-place machines.

In 1947, switchgear, motor control centers and plant electrical systems were monitored by operators reading analog meters. Today, switchgear, MCCs and plant electrical distribution systems monitor themselves, protecting motors and equipment with electronic overload relays. Sophisticated metering, software and power monitoring equipment enable plant managers to maximize production time, maintain worker safety and provide the best possible power quality at the lowest possible cost.

How automation changed automation

Perhaps the biggest plant floor changes automation has made in the past 60 years are in automation itself. Numerical control of machining equipment, the distributed control system and the PLC were innovations that changed the course of manufacturing.

Early refineries were making the transition from batch stills to continuous process operations. Operators made process decisions based on observing product volume, color and temperature through sight glasses or feeling the pipes. They could react to obvious change, but had limited ability to actually control the process.

By the mid-1950s, chemical plants and refineries used pneumatic instruments to control their processes from central control rooms. Armed with clipboards, operators roamed plants, recording data read from gauges and thermometers, and made judgments from process observations.

Electronic instrumentation began to replace pneumatics in the late 1950s. Using mini-computers to control refineries and chemical plants began in the early 1960s %%MDASSML%% a significant milestone.

DCSs began to appear around 1975. Today, process control extends beyond PID and closed loop control to include model-based control, real-time optimization, real time performance management tools and alarm management.

The American automotive industry drove the need for technology that led to the development of the PLC. Relays and timers performed control, sequencing and safety interlocking for making cars. Bedford Associates developed the first PLC: Modicon, which stood for modular digital controller.

PLCs replaced thousands of relays, cam timers and drum sequencers that controlled machines. Software revision replaced re-wiring of hard-wired control panels when production requirements changed.

A programmable automation controller combines the features and capabilities of a PC-based control system with that of a typical PLC. PACs are used for process control, data acquisition, remote equipment monitoring, machine vision and motion control. Today, PACs can transfer data from the machines they control to other machines and components in networked systems, or to application software and databases.

Automation made today's productivity and efficiency possible. The ability to extract information from manufacturing processes helps plants improve their bottom lines. Tomorrow's challenges will be how best to apply what we have learned and to apply it to new challenges.





Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
June 2018
2018 Lubrication Guide, Motor and maintenance management, Control system migration
May 2018
Electrical standards, robots and Lean manufacturing, and how an aluminum packaging plant is helping community growth.
April 2018
2017 Product of the Year winners, retrofitting a press, IMTS and Hannover Messe preview, natural refrigerants, testing steam traps
June 2018
Machine learning, produced water benefits, programming cavity pumps
April 2018
ROVs, rigs, and the real time; wellsite valve manifolds; AI on a chip; analytics use for pipelines
February 2018
Focus on power systems, process safety, electrical and power systems, edge computing in the oil & gas industry
Spring 2018
Burners for heat-treating furnaces, CHP, dryers, gas humidification, and more
April 2018
Implementing a DCS, stepper motors, intelligent motion control, remote monitoring of irrigation systems
February 2018
Setting internal automation standards

Annual Salary Survey

After two years of economic concerns, manufacturing leaders once again have homed in on the single biggest issue facing their operations:

It's the workers—or more specifically, the lack of workers.

The 2017 Plant Engineering Salary Survey looks at not just what plant managers make, but what they think. As they look across their plants today, plant managers say they don’t have the operational depth to take on the new technologies and new challenges of global manufacturing.

Read more: 2017 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Electrical Safety Update
This digital report explains how plant engineers need to take greater care when it comes to electrical safety incidents on the plant floor.
Maintenance & Safety
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
IIoT: Machines, Equipment, & Asset Management
Articles in this digital report highlight technologies that enable Industrial Internet of Things, IIoT-related products and strategies.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me