Automation safety: Clearer requirements arise for risk assessments

These requirements are applicable to new or significantly rebuilt machinery.


These requirements are applicable to new or significantly rebuilt machinery. Courtesy: StellarAutomation has gained plenty of traction in the food and beverage processing industry thanks to benefits including cost savings, labor reduction and increased food safety. However, a slew of national and international guidelines and requirements has made owning automation equipment more complex than ever before—with risk assessments an especially gray area. The good news? Clearer risk assessment requirements have arrived from the International Organization for Standardization (ISO) and The American National Standards Institute (ANSI), offering more consistent expectations.

Traditional PHAs: a fuzzy definition for risk assessments

In the refrigeration industry, employers, of course, must conduct a process hazard analysis (PHA) to identify, evaluate and control the hazards of the process for OSHA compliance. The employer’s PHA must address the engineering controls and administrative controls applicable to the hazard (i.e. what controls are in place and what safeguards exist that would likely prevent an incident from occurring following an initiating event). However, a traditional PHA only has methods to determine if engineered controls are required but doesn’t define the degree of coverage and reliability.

ISO and ANSI offer clarifications

In the past, engineering controls risk assessments were perceived as a black art, only performed empirically through failure mode analysis methods by mathematicians for extremely hazardous processes. However, the following two risk assessment standards greatly simplify the process:

  1. ISO 12100:2012 Safety of machinery – General principles for design – Risk assessment and risk reduction
  2. ANSI B11:0:2010 Safety of machinery – General requirements and risk assessment

These standards direct the analyst to quantify both the hazard requiring an engineered control and the engineered controls performance requirements (e.g. safety integrity level). The quantitative outcome of these standards’ risk assessment provides a more consistent solution versus a traditional PHA.

OSHA’s current standard for process engineering controls

The current standard for process engineering controls is ANSI/ISA – S84.00.01-2004 Parts 1-3 (IEC 61511 Mod) “Functional Safety: Safety Instrumented Systems for the Process Industry Sector.” OSHA considers this standard to be recognized and generally accepted good engineering practices for safety instrumented systems (SIS).

Therefore, if an employer chooses to use S84.00.01-2004 Parts 1-3 as a basis (“code or standard employed”) for SIS, and meets all S84.00.01-2004 Parts 1-3 requirements and other OSHA PSM requirements related to SIS, the employer will then be considered in compliance with OSHA PSM requirement for SIS.

Considerations for risk assessments and hazard reductions

When following such standards, ensure your risk assessments and hazard reduction address the following key elements:

Risk assessments

  • Analyze all hazards on the machine based on:
    - Severity
    - Probability
    - Avoidance levels
  • Define the hazards and methods to remove the hazards
  • Create and perform a plan to reduce those hazards

Hazard reductions

  • Apply complementary protective measures to ensure your mechanical design is safe
  • Implement the proper safeguards, such as:
    - Redesign the machine
    - Apply fixed guards, placards, stickers, warners
  • If the hazards cannot be reduced, employ a complementary measure of automation safety systems such as:
    - A door
    - White curtain
    - Anything that will stop or remove the energy from the hazard to protect the person. For example, installing a computer that will automatically keep the PERSON away from the hazard
  • Other safeguards may include:
    - A fence/plexiglass
    - Metal wall adjustable guards
    - Moveable guards.

Remember, it’s up to the plant owner (not the machine manufacturer) to maintain these safety standards.

- Paul Gobeille is the senior automation project engineer Stellar. This article originally appeared on Stellar Food for Thought blog. Stellar is a content partner of CFE Media. Edited by Joy Chang, digital project manager, CFE Media,

Stellar is a CSIA member as of 7/6/2015

Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2017 Top Plant.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
May 2018
Electrical standards, robots and Lean manufacturing, and how an aluminum packaging plant is helping community growth.
April 2018
2017 Product of the Year winners, retrofitting a press, IMTS and Hannover Messe preview, natural refrigerants, testing steam traps
March 2018
SCCR, 2018 Maintenance study, and VFDs in a washdown environment.
April 2018
ROVs, rigs, and the real time; wellsite valve manifolds; AI on a chip; analytics use for pipelines
February 2018
Focus on power systems, process safety, electrical and power systems, edge computing in the oil & gas industry
December 2017
Product of the Year winners, Pattern recognition, Engineering analytics, Revitalize older pump installations
Spring 2018
Burners for heat-treating furnaces, CHP, dryers, gas humidification, and more
April 2018
Implementing a DCS, stepper motors, intelligent motion control, remote monitoring of irrigation systems
February 2018
Setting internal automation standards

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Maintenance & Safety
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
Industrial Analytics
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
IIoT: Operations & IT
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me