Artificial Intelligence Poised to Revolutionize Preventive Maintenance

Highly automated applications of pattern recognition technology that can predict machine breakdown events with 80%+ accuracy one week ahead of occurrence offer the promise to soon make the current regimens of routine preventive maintenance obsolete. This is fact, not an exaggeration. These first applications for industrial asset management use the same type of pattern recognition technologies ...


Highly automated applications of pattern recognition technology that can predict machine breakdown events with 80%+ accuracy one week ahead of occurrence offer the promise to soon make the current regimens of routine preventive maintenance obsolete. This is fact, not an exaggeration. These first applications for industrial asset management use the same type of pattern recognition technologies perfected in military scenarios and other mission-critical situations. The methods, or more accurately the combination of methods, have only become possible very recently.

Whether or not the term "pattern recognition technology" is familiar to you, the technology itself certainly is. That spell checker on your word processor is a primitive version of pattern recognition technology. So is the voice recognition software that now allows you to reach many customer service departments by phone. And, if you have ever received a call from your credit card company inquiring as to unusual purchases on your account, it probably was a call enabled by pattern recognition technology. Using pattern recognition technology to predict machine breakdown events is simply a far more complex and sophisticated variation on these distant cousin pattern recognition technologies.

Pattern recognition technology is built on various mathematical methods used to model and interpret data. In essence, pattern recognition technology takes what mathematicians think of as highly dimensional data into one-dimensional space. That one-dimensional space is a single number or representation that can provide a classification or prediction. Machines, being electromechanical systems, have a variety of parameters that can be mathematically mapped. The mapped parameters of functioning machines create certain data clusters, while those of malfunctioning machines create different data clusters. Pattern recognition technologies then find the partitions between different clusters. When machines with new parameters are mapped, they fall on one side or another of the "discovered" partitions, and meaningful predictions of machine behavior are then made.

Thus, the magic, if you will, is in the math. Sources for such pattern recognition studies do not require you to have any additional hardware or software in your plant. For example, pattern recognition studies do not require you to outfit your equipment with new sensors. In fact, sensor data is only one type of data used in such studies. All of those operating codes—activity logs, error logs, command codes and sensor data—may come into play. Usually, all your plant needs to do is use existing modem or Internet hookups to send such data to a service provider capable of conducting machine behavior studies with highly automated pattern recognition technology.

Distributive computing technology that allows such a highly automated process to proceed does underlie such applications of artificial intelligence techniques, but there is no need for your plant to make extensive and expensive hardware investments. More to the point, your operation can obtain outsourced studies without making the multimillion-dollar and decades-long investment it takes to master the mathematical and programming expertise that underlies pattern recognition technology.

Because these studies predict the behavior of each and every machine in a population with 80%+ accuracy, you no longer need to make or use analyses of trends in machine breakdowns. Routine replacements of parts as part of preventive maintenance can also be minimized, if not eliminated altogether. Instead, you know which parts in which machines will break in the coming week, so you can then schedule replacement part installations accordingly.

A pattern recognition technology-driven inventory management system delivers parts so that predicted break/fix events are addressed during normal preventive maintenance. With accumulated experience, all break/fix events are predicted early enough to be addressed during preventive maintenance, and ultimately, advance diagnosis of break/fix events eliminates them altogether.

Pattern recognition technology predicts the behavior of each and every machine in a given population. A savvy plant needs to replace parts far less often, because it has insight into which parts really need replacement, and when, for each machine.

Today, most businesses estimate that they spend 1.5% of gross revenues on service delivery. Studies to predict machine behavior with pattern recognition technology tools, now in their infant stage, promise to dramatically alter this standard.

The revolution, so to speak, is actually a tried-and-true mechanism to bring cutting edge mathematics to bear on everyday problems of plant engineering. For most companies, prepping machine populations for pattern recognition studies can be done in hours or days, not weeks.

More than anything else, the return on investment from this breakthrough technology requires a new way of thinking from plant management.

Author Information
David Harris is president of Chicago-headquartered Zero Maintenance International, which has pioneered application of pattern recognition technologies capable of predicting machine breakdown events and machine error codes. He can be reached at , 312-829-3960 ext 109, fax 312-829-5819.

Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
September 2018
2018 Engineering Leaders under 40, Women in Engineering, Six ways to reduce waste in manufacturing, and Four robot implementation challenges.
GAMS preview, 2018 Mid-Year Report, EAM and Safety
June 2018
2018 Lubrication Guide, Motor and maintenance management, Control system migration
August 2018
SCADA standardization, capital expenditures, data-driven drilling and execution
June 2018
Machine learning, produced water benefits, programming cavity pumps
April 2018
ROVs, rigs, and the real time; wellsite valve manifolds; AI on a chip; analytics use for pipelines
Spring 2018
Burners for heat-treating furnaces, CHP, dryers, gas humidification, and more
August 2018
Choosing an automation controller, Lean manufacturing
September 2018
Effective process analytics; Four reasons why LTE networks are not IIoT ready

Annual Salary Survey

After two years of economic concerns, manufacturing leaders once again have homed in on the single biggest issue facing their operations:

It's the workers—or more specifically, the lack of workers.

The 2017 Plant Engineering Salary Survey looks at not just what plant managers make, but what they think. As they look across their plants today, plant managers say they don’t have the operational depth to take on the new technologies and new challenges of global manufacturing.

Read more: 2017 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Material Handling
This digital report explains how everything from conveyors and robots to automatic picking systems and digital orders have evolved to keep pace with the speed of change in the supply chain.
Electrical Safety Update
This digital report explains how plant engineers need to take greater care when it comes to electrical safety incidents on the plant floor.
IIoT: Machines, Equipment, & Asset Management
Articles in this digital report highlight technologies that enable Industrial Internet of Things, IIoT-related products and strategies.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
Design of Safe and Reliable Hydraulic Systems for Subsea Applications
This eGuide explains how the operation of hydraulic systems for subsea applications requires the user to consider additional aspects because of the unique conditions that apply to the setting
click me