Artificial intelligence and mobility— a proactive road to process control

Leverage artificial intelligence and mobile technology to make sense of plant data.


Instead of pushing alerts and charts, software is now available that can push answers through e-mail clients, text messages, and even smartphone mobile apps, enabling engineers to spend their time fixing issues or, better yet, preventing them. Image courtEngineers in modern manufacturing facilities have a large variety of tools at their disposal. In most cases there is no shortage of data available to these professionals, but in virtually all cases there is a shortage of another key resource: Time.

The large amounts of data available in modern, connected factories help today's engineers keep their processes stable and in control, but there is a time cost associated with managing that data. The time it takes to figure out what database from which to pull data, the time to mine that data, the time to pull reports, and the time to analyze them adds up. The amount of time spent only grows if they get into something more involved, like regression analysis. Timing is critical, especially if a process issue or production stoppage is the reason the engineer started the data mining and analysis work to begin with.

Every minute of mining and analysis could be one minute of lost production which equals lost profit. Some companies even track a metric called Nonvalue Added Activity (NVAA) which is the amount of time dedicated to work done that does not produce parts. An argument can be made that all the time data mining and analyzing process data can be put directly in the NVAA cost bucket. However, without data, how can an engineer know where to start to fix a production issue?

The answer is to leverage artificial intelligence and mobile technology to monitor and mine the data, complete the analysis in continuous real-time, and "push" the answer to the engineer. Utilizing tools that enable push analytics creates plant floor intelligence and visibility that will shorten time to root cause, reduce NVAA, and ultimately reduce loss.

Artificial intelligence and push analytics

As the connected factory grows and joins the Industrial Internet of things (IIoT), it has become possible to apply technology to eliminate the time associated with traditional data acquisition and analysis. Artificial intelligence and push analytics can automate the mining, analysis, creation of charts, and can send the information directly to the correct person to fix the issue. But there is a further step, which is breaking new ground: Doing all of this before there is a production problem, transforming the culture of the plant floor from reactive to proactive.

Pushing alerts and automating reports that can be sent to engineers is not new. The technology to accomplish this task was being used in the 1990s and is still used today. It is improvements in other technologies that enable continuous real-time analytics powered by artificial intelligence to be more affordable and available to the factory floor. Lower-priced data storage, increased connectivity of machines, and high-speed computing are also catalysts for this change in manufacturing. Now instead of pushing alerts and charts, the software can push answers through e-mail clients, text messages, and even smartphone mobile apps, enabling engineers to spend their time fixing issues or, better yet, preventing them.

Providing an intelligent IT automation platform that pushes answers based on the continuous automated analysis of every process on the floor can help anticipate potential process problems and point plant personnel to the source before a production loss occurs. Existing process data is collected, analyzed, and monitored at the cycle time of the production line, and information is sent to the right user at the right time; which is before there is a production loss, not after. This creates a cultural change on the plant floor, where effort is spent preventing issues at a controlled and manageable pace, instead of reacting to production losses in a frenetic and unpredictable fashion. For example, Trumble Inc.'s software product, Reveal, shows engineers emerging trends in the process data that could lead to a production loss. The software uses traditional, time-tested tools like statistical process control (SPC), regression analysis, and Shainin pre-control combined with high-speed computing, powerful algorithms, and artificial intelligence to enable a truly proactive approach to process management.

Challenges of proactive process control

Enabling plant floor intelligence and proactive control does have its challenges. One of the first things that needs to be addressed is getting the plant personnel to recognize that they will not be responding to traditional triggers like flashing red lights, stopped conveyors, and scrambling technicians and engineers.

Another paradigm shift is getting personnel used to fixing something before it breaks. Exception-based alerts based on trends in "good data" will show engineers where to go before a major process event occurs, saving time and money. Again, traditional triggers are absent in this scenario because the plant floor continues to work as designed. Once plant floor personnel embrace this new way to manage their process, they can begin to expand even further to enable concepts like true data-driven preventive maintenance. For example, in machining, preventive maintenance based on process data and part quality can save millions of dollars a year. Expensive cutters are often changed on a regular time interval or after a major quality spill or broken tool. Once proactive controls are enabled, trends in the data are monitored by the system and will only alert when a change needs to be made, before any quality spills or loss occurs. Imagine getting another 10 hours of life out of a tool because the tool tells you it has 10 more hours of life in it. Another area for major improvement will be to take the continuous real-time analytics from the floor and use them for comparison purposes to "digitally validate" plant production virtual simulations. The potential is limitless. The ability to harness artificial intelligence for proactive process control is already here. Once the right technology that truly enables plant floor intelligence is identified, all it takes is a change in a plant's cultures to fully leverage the efficiencies created by push analytics. The technology is important, of course, but people make the difference.

Don Manfredi is president of Trumble Inc., Farmington Hills, Mich.

Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
June 2018
2018 Lubrication Guide, Motor and maintenance management, Control system migration
May 2018
Electrical standards, robots and Lean manufacturing, and how an aluminum packaging plant is helping community growth.
April 2018
2017 Product of the Year winners, retrofitting a press, IMTS and Hannover Messe preview, natural refrigerants, testing steam traps
June 2018
Machine learning, produced water benefits, programming cavity pumps
April 2018
ROVs, rigs, and the real time; wellsite valve manifolds; AI on a chip; analytics use for pipelines
February 2018
Focus on power systems, process safety, electrical and power systems, edge computing in the oil & gas industry
Spring 2018
Burners for heat-treating furnaces, CHP, dryers, gas humidification, and more
April 2018
Implementing a DCS, stepper motors, intelligent motion control, remote monitoring of irrigation systems
February 2018
Setting internal automation standards

Annual Salary Survey

After two years of economic concerns, manufacturing leaders once again have homed in on the single biggest issue facing their operations:

It's the workers—or more specifically, the lack of workers.

The 2017 Plant Engineering Salary Survey looks at not just what plant managers make, but what they think. As they look across their plants today, plant managers say they don’t have the operational depth to take on the new technologies and new challenges of global manufacturing.

Read more: 2017 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Electrical Safety Update
This digital report explains how plant engineers need to take greater care when it comes to electrical safety incidents on the plant floor.
Maintenance & Safety
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
IIoT: Machines, Equipment, & Asset Management
Articles in this digital report highlight technologies that enable Industrial Internet of Things, IIoT-related products and strategies.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me