A four-step process to energy control

For many, an energy audit seems like a logical place to start. An energy action plan takes that crucial next step.

07/01/2010


Industrial buildings are responsible for 31% of global energy consumption, easily exceeding all other building types. While industrial facility ownership and management have generally been cognizant of energy as it relates to cost control and the competitive advantages of being viewed as green and sustainable, that statistic suggests that many energy efficiency opportunities aren't being exploited.

For many, an energy audit seems like a logical place to start. Although valuable due to energy efficiency improvement recommendations they make, such studies typically don't include mechanisms to ensure those improvements are addressed. An energy action plan takes that crucial next step, because it will recommend a roadmap that inculcates ongoing energy planning and accountability.
One such roadmap is comprised of four steps
• Measure energy usage
• Fix the basics
• Automate where appropriate
• Monitor and control

Step 1: Measure
The first step toward better managing energy is to ascertain current usage. That means collecting data from major energy consumers within a facility and analyzing the impact of those consumers on total energy consumption. Installing power metering and monitoring in this step is important to provide a baseline regarding utility usage and increasing energy awareness.
While an energy audit can provide industrial facility ownership a snapshot regarding the current state of a facility's energy usage, unless it drives a strategic energy plan, it is of little value. The most important thing is to do something with the recommendations an audit makes. A comprehensive energy action plan should address both the short-term improvements needed immediately as well as plan future strategies to implement as energy prices fluctuate. A well-thought plan should have clear actions in mind, and reflect good decisions that can be somewhat independent of current energy prices.

Step 2: Fix the basics
Fixing the basics is typically the only tactic addressed by facility management in the wake of an energy audit. This can include installing low energy-consumption devices and improving the plant's power factor.
But while these are certainly important and can translate to as much as a 15% energy efficiency increase, such measures are typically a one-time improvement.
For example, a new energy-efficient transformer has a useful lifecycle of two decades or more. Conversely, renewable self-generation options may both lower current costs and help a facility deal with the impact of potential changes in emission requirements.

Step 3: Automate
Ongoing energy efficiency improvements can be achieved by automating and regulating building systems and processes. Measures such as schedule-based lighting control and occupancy sensors automatically turn lights on only when they are needed, while HVAC control regulates heating and cooling at the optimal levels, which can change day by day. Variable frequency drives regulate the fans and pumps central to a facility's HVAC system and manufacturing processes, so they aren't constantly running at full capacity. Combined, these measures can provide up to a 15% energy efficiency improvement.
But more importantly, they facilitate an active approach to energy management, because they can be adjusted based on new energy efficiency opportunities that can arise in the future. One recent example is demand response, where pre-selected electrical loads are turned off based on a utility request or when electrical rates meet a pre-set threshold.

Step 4: Monitor and control
A strategic energy action plan also helps ensure that initial energy and cost savings don't erode over time. Power meter installations, monitoring services, energy efficiency analysis and energy bill verification can all help achieve this end, but one of the most effective ways is through an enterprise energy management (EEM) system, a tool that provides energy-related business intelligence to company stakeholders. Essentially, an EEM system collects energy-relevant data, such as water, compressed air, electricity, natural gas and steam values, production information and outside air temperature. That information is then collated and presented as actionable business intelligence in a dashboard format that can be customized for an individual users' needs.
The information an EEM system provides can be studied to find new ways to better manage energy usage, or troubleshoot existing energy challenges. For example, an EEM could be used to model one utility rate against another, or it could note that one department or plant's energy usage is egregiously higher than others, which can be investigated and addressed. An EEM system can also quantify payback on energy efficiency measures that are implemented.

Changing mindsets
An energy action plan that comprises the four steps listed above can help industrial facility management be proactive with regard to energy usage, instead of reacting to the latest energy cost spike. It also can help build energy accountability, among individual departments within a facility and even multiple facilities, and can constantly evolve to take advantage of new opportunities. This will help change mindsets across the enterprise, and make energy management a key component of corporate culture.

Jim Plourde is National Business Development Manager for Schneider Electric and has worked for the company for 14 years. Carl Castellow is a professional engineer with more than 25 years' experience in the field of industrial energy efficiency. He has worked the last four years heading Schneider Electric's industrial energy efficiency organization.



Top Plant
The Top Plant program honors outstanding manufacturing facilities in North America.
Product of the Year
The Product of the Year program recognizes products newly released in the manufacturing industries.
System Integrator of the Year
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
June 2018
2018 Lubrication Guide, Motor and maintenance management, Control system migration
May 2018
Electrical standards, robots and Lean manufacturing, and how an aluminum packaging plant is helping community growth.
April 2018
2017 Product of the Year winners, retrofitting a press, IMTS and Hannover Messe preview, natural refrigerants, testing steam traps
June 2018
Machine learning, produced water benefits, programming cavity pumps
April 2018
ROVs, rigs, and the real time; wellsite valve manifolds; AI on a chip; analytics use for pipelines
February 2018
Focus on power systems, process safety, electrical and power systems, edge computing in the oil & gas industry
Spring 2018
Burners for heat-treating furnaces, CHP, dryers, gas humidification, and more
April 2018
Implementing a DCS, stepper motors, intelligent motion control, remote monitoring of irrigation systems
February 2018
Setting internal automation standards

Annual Salary Survey

After two years of economic concerns, manufacturing leaders once again have homed in on the single biggest issue facing their operations:

It's the workers—or more specifically, the lack of workers.

The 2017 Plant Engineering Salary Survey looks at not just what plant managers make, but what they think. As they look across their plants today, plant managers say they don’t have the operational depth to take on the new technologies and new challenges of global manufacturing.

Read more: 2017 Salary Survey

The Maintenance and Reliability Coach's blog
Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
One Voice for Manufacturing
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Maintenance and Reliability Professionals Blog
The Society for Maintenance and Reliability Professionals an organization devoted...
Machine Safety
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
Research Analyst Blog
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Marshall on Maintenance
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
Lachance on CMMS
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
Electrical Safety Update
This digital report explains how plant engineers need to take greater care when it comes to electrical safety incidents on the plant floor.
Maintenance & Safety
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
IIoT: Machines, Equipment, & Asset Management
Articles in this digital report highlight technologies that enable Industrial Internet of Things, IIoT-related products and strategies.
Randy Steele
Maintenance Manager; California Oils Corp.
Matthew J. Woo, PE, RCDD, LEED AP BD+C
Associate, Electrical Engineering; Wood Harbinger
Randy Oliver
Control Systems Engineer; Robert Bosch Corp.
Data Centers: Impacts of Climate and Cooling Technology
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
Safety First: Arc Flash 101
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
Critical Power: Hospital Electrical Systems
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me