5 Best Ways to Extend Ethernet

For many applications of TCP/IP networking, the 100-meter range limit of copper Ethernet cable becomes a problem. With conversion and extension, networks can cover distances that are measured in kilometers.


When TCP/IP networking moves out of the home and office environment and into the real world, the 100-meter range limitation of copper Ethernet cable becomes a problem. The remote sensors along an oil pipeline, for example, are going to require a bit more range than that. Fortunately, there are ways to provide it. With conversion and extension, networks can cover distances that are measured in kilometers rather than meters.

1) Ethernet extender

One easy solution is the Ethernet extender. An Ethernet extender uses DSL technology to extend range up to 1,900 meters, or nearly 2 kilometers (Figure 1). And they’ll work with all sorts of copper wire, which makes them very cost-effective. The labor and cabling involved in a network installation normally represent a significant part of the expense, but Ethernet extenders will make use of any legacy cable already in place, like Cat5 cable or even old telephone lines. The savings can be substantial.

An Ethernet extender uses DSL technology to extend range up to 1,900 meters, nearly 2 kilometers. Courtesy: B&B Electronics

Ethernet extenders are set up in pairs. The first extender converts the Ethernet data for transmission over DSL. The second converts it back again. Throughput may be up to 50 Mbps, depending upon the range. Data signals attenuate over copper wire, of course, but even at the full 1,900 meters, Ethernet extenders can still provide throughputs of 1 Mbps. Some Ethernet extenders are also equipped to provide Power over Ethernet (PoE), which overcomes the challenge of powering remote devices placed away from a power source by providing power directly from the extended Ethernet port (Figure 2).

For best performance, be sure that the extender wire is free of load coils, filters, and splitters. 

Ethernet extenders can provide Power over Ethernet (PoE) to overcome the challenge of powering remote devices placed away from a power source by providing power directly from the extended Ethernet port. Courtesy: B&B Electronics

2 and 3) Fiber optics: single-mode, multi-mode

When 1,900 meters isn’t enough, or enormous bandwidth is required, larger networks will typically employ fiber optic cable. There are two kinds. The cheaper option, multi-mode fiber optic cable, uses LED light and can carry data several kilometers. It is often used as the backbone infrastructure for office building and factory networks.

The telephone and cable companies, with their need for great range, are more likely to use single-mode fiber optic cable. Single-mode cable transmits with a laser rather than an LED, and it lets the telephone companies (telcos) transmit data across continents. Just as multi-mode fiber and its associated equipment is more expensive than copper wire, single-mode fiber optic installations are more costly than multi-mode. But many network designers still specify the more expensive single-mode fiber optics at the outset, reasoning that labor costs will represent a large part of the installation expense in any case, and that the great bandwidth and range provided by single-mode fiber ensure that the installation won’t become obsolete at any time in the foreseeable future (Figure 3). 

Great bandwidth and range provided by single-mode fiber ensure that the installation won’t become obsolete at any time in the foreseeable future. Courtesy: B&B Electronics

4) Radio

Copper or fiber optic installations may not make economic sense when data has to cross barriers like rivers or highways. But advances in radio technology are letting Wi-Fi do the job.

Radio waves can be absorbed or reflected by anything from the walls of a building to the vehicles in the parking lot. Called multipath propagation, the phenomenon means that transmitted signals arrive at the receiver at different times and out of sequence. The higher the radio frequency, the worse the problem becomes. Low frequencies, on the other hand, provide less bandwidth and need larger antennas and more power to produce useful gain. As a result, the most popular of the unlicensed frequencies was traditionally the 2.4 GHz band, which lies somewhere in the middle. But the 2.4 GHz band is used by everything from cordless telephones to microwave ovens, and has gotten very crowded.

Wi-Fi developers have responded to these issues with the new 802.11n standard. 802.11n Wi-Fi incorporates multiple-input multiple-output (MIMO) technology that uses multiple antennas at both the transmitting and receiving sides of the wireless connection. The data is split into numerous spatial streams, which are then transmitted through separate antennas and collected by corresponding antennas in the receiving devices. Onboard software uses signal processing algorithms to correct and interpret the incoming data.

MIMO 802.11n devices also use precoding and postcoding techniques like spatial beamforming. Spatial beamforming modifies the phase and relative amplitude of the signal to create a pattern of constructive and destructive interference in the wavefront, which simplifies interpretation on the receiving side. The 802.11n standard also adds frame aggregation to the MAC layer. By grouping several data frames into a single, larger frame, the ratio of payload data to total data volume is higher, as management information is specified less frequently. This allows for improved throughput. The 802.11n standard also adds 40 MHz channels to the physical layer (PHY), twice the bandwidth that was available under the older 20 MHz standard.

Using the IEEE 802.11n standard, a wireless network bridge like the B&B Electronics Ghostbridge can create high-speed (up to 150 Mbps) point-to-point links between two remote devices or networks over line of sight distances of up to 15 km. Courtesy: B&B E

Using the IEEE 802.11n standard, a wireless network bridge (Figure 4) can create high-speed (up to 150 Mbps) point-to-point links between two remote devices or networks over line of sight distances of up to 15 km.

5) Cellular networking

Virtually everyone has a cell phone these days, and you could say that machines are starting to acquire them as well. Talk time has flattened out, and the wireless carriers know that cellular M2M networking will have to be one of their strategic growth markets. As a result, cellular data plans are becoming very M2M-friendly. Both Verizon and AT&T have recently announced shared-data plans (see “AT&T to introduce shared-data plans”) that are designed to encourage the networking of devices like industrial control systems, water meters, and ATMs.

When the cellular network serves as your Internet backbone, Ethernet’s original 100-meter range seems rather quaint. Using technology from companies like Czech Republic-based Conel, which connects machines through cellular networks to Ethernet, serial, and other data networks, users are creating networks of virtually unlimited size, with increasingly complex topologies. The systems support multiple protocols and encryption, the network remains under the user’s own control, and any station on the network can serve as an end or retranslation station. The use of multiple SIM cards in one device establishes redundancy, as the device is equipped to connect to more than one cellular provider at the same time. Cellular networking extends the network’s edge to any location that has cellular service.

Extension risks

Fiber optics are immune to electromagnetic interference (EMI), spikes, surges, and ground loops. The data isn't traveling along a copper wire; it's carried by a beam of light. This is invaluable in industrial applications, for example, where the electric motors on the machinery can generate powerful magnetic fields. Wi-Fi and cellular networking confer similar advantages.

But remember that extending your data communications range via copper wire increases the risk for unwanted electrical events. The greater the distance between connected devices, the more likely it is that they will have different building ground references and the associated risk for ground loops. If the cable is installed in an industrial environment and passing machinery along the way, greater range also creates more opportunities for EMI.

Copper wire network installations should be protected with surge suppression and isolation. Surge suppressors limit spikes between the signal and ground line and should be deployed as a first line of defense on power supply lines. Current models can be DIN rail mounted or connected directly to a cabinet, with surge protection ratings of up to 39 kA and less than 1 ns response time. But when the ground line rises, as it does in ground loop events, you’ll need isolation. Isolators convert data signals either to pulses of light or an electrical field, and then back again. Spikes and surges are stopped at the isolation zone. Isolators protect power lines by transforming dc power to ac, then back again.

Ethernet cable still has an effective range of 100 meters, just as it always has. But when used in combination with the technologies described above, there’s no reason you can’t extend your network to include just about any device, just about anywhere.

- Mike Fahrion, the director of product management at B&B Electronics, is an expert in data communications with 20 years of design and application experience. He oversees development of the company’s rugged M2M connectivity solutions for wireless and wired networks based on serial, Ethernet, wireless, and USB communication technologies. Fahrion is a speaker and author who writes a self-described politically incorrect newsletter, “eConnections,” with more than 50,000 monthly subscribers. Edited by Mark T. Hoske, content manager CFE Media, Control Engineering, Plant Engineering, and Consulting-Specifying Engineer, mhoske@cfemedia.com.


Control Engineering wireless coverage page has more about wireless networking. For more articles about system integration and industrial communications see http://www.controleng.com/integration. 

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2017 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
2017 Top Plant winner, Best practices, Plant Engineering at 70, Top 10 stories of 2017
Pipe fabrication and IIoT; 2017 Product of the Year finalists
The future of electrical safety; Four keys to RPM success; Picking the right weld fume option
Product of the Year winners, Pattern recognition, Engineering analytics, Revitalize older pump installations
Control room technology innovation; Practical approaches to corrosion protection; Pipeline regulator revises quality programs
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Knowing how and when to use parallel generators
PID controllers, Solar-powered SCADA, Using 80 GHz radar sensors
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me