Wireless M2M increases value of wired infrastructure

New technology overcomes limitations of previous systems to deliver value.


Figures 1 and 2: Vendors are now producing wireless routers and bridges that provide the serial-to-Wi-Fi conversion in a single box solution. An Ethernet port lets you connect to the same wireless router or bridge. All images courtesy: B&B ElectronicsThe IT world started to standardize network infrastructures back in the 1990s, pursuing interoperability in everything from cabling and connectors to the seven-layer Open System Interconnection model. Costs per connection plummeted and performance skyrocketed. But the industrial world sat on the sidelines for years, trapped in single vendor communities with proprietary Fieldbus systems as a result of a general belief that Ethernet was too fragile for manufacturing environments. Eventually, however, the enormous cost differential between an “IT” network connection and an “industrial” connection led to a tipping point. Vendors started to provide ruggedized equipment, and Ethernet has become an integral part of industrial automation.

We’re approaching another tipping point now. Like the early incarnations of wired Ethernet, wireless Ethernet was long perceived as being too unreliable for industrial applications. A failure or interruption in the wireless connections at a local coffee shop is normally a mere an inconvenience, but in the industrial world it can be a catastrophe. So, like wired Ethernet, wireless Ethernet had to make some changes before it could be used for machine-to-machine (M2M) automation.

Reliable Wi-Fi connections

Wi-Fi’s interoperability and low-cost chipsets make it a natural choice for wireless IT applications. But the early Wi-Fi standards struggled with issues like multi-path propagation, the phenomenon that occurs when radio waves are absorbed or reflected by obstacles in the local environment. The obstacles may be anything from ordinary building materials to vegetation, and each one interacts with radio in its own way. The end result is that Wi-Fi signals arrive at the receiver at different times and out of sequence. A connection that worked at one moment might fail five minutes later, simply because someone moved a forklift or relocated a stack of cartons.

Figures 1 and 2: Vendors are now producing wireless routers and bridges that provide the serial-to-Wi-Fi conversion in a single box solution. An Ethernet port lets you connect to the same wireless router or bridge. All images courtesy: B&B ElectronicsThe Wi-Fi 802.11n standard addresses that problem with multiple-input multiple-output (MIMO) technology. The standard employs multiple antennas at both the transmitting and receiving sides of the wireless connection and splits the data into numerous spatial streams. The streams are transmitted through separate antennas and collected by corresponding antennas in the receiving devices, where onboard software uses signal processing algorithms to correct and interpret the incoming data.

MIMO 802.11n devices also employ precoding and postcoding techniques like spatial beamforming. Spatial beamforming modifies the phase and relative amplitude of the signal to create a pattern of constructive and destructive interference in the wavefront, which simplifies interpretation on the receiving side. The 802.11n standard adds frame aggregation to the MAC layer, and makes it possible to specify management information less frequently by grouping several data frames into a single, larger frame. The ratio of payload data to total data volume is higher, allowing for better throughput. 802.11n also adds 40 MHz channels to the physical layer (PHY), twice the bandwidth that was available under the older 20 MHz standard. Together, 802.11n’s many modifications to the Wi-Fi standard have resulted in a wireless technology that is reliable enough for industrial applications.

Obsolescence isn’t an option

Figure 4: Today's cellular routers will often include support for serial devices. Courtesy: B&B ElectronicsIf you buy a new desktop computer these days it will come with multiple USB ports as standard equipment. But if you want a serial port you’ll probably have to install an expansion card. Serial communications have become irrelevant in the home/office world, where the inability to connect to some old dot matrix printer is hardly a cause for concern. Things are a bit different in the industry. Companies and organizations all over the world still have enormous capital investments in serial equipment. In fact, the low cost and rugged reliability of the serial protocols continue to make serial installations quite attractive, and the number of installed serial devices continues to grow. So how do you get those serial devices to communicate across modern networks, and how do you make them wireless?

Wired serial servers and media converters have been around for a long time. So one option would be to Wi-Fi enable them by connecting them to an external wireless device. But there’s another way to go about it.

Vendors are now producing wireless routers and bridges that provide the serial to Wi-Fi conversion in a single box solution.

You can use these devices to wirelessly network-enable either new or legacy serial equipment. There will normally be an Ethernet port as well, which will let you connect local networks or stand-alone Ethernet devices to the same wireless router or bridge.

Another option is the wireless access point. Connecting it to your serial device gives the serial device its own Wi-Fi hotspot, allowing technicians to communicate via laptops, tablets, or even smartphones. If you’re designing new serial equipment you can build in all of the same functionality by adding embedded modules that duplicate the features of the external routers/bridges/access points.

Wireless router/bridge/access points can also be used to network-enable mobile equipment like forklifts, which will connect to networks or handheld devices any time they are within range. Dual band Wi-Fi devices will let you choose between the 2.4 Ghz and 5 Ghz license free bands in environments where the airwaves are cluttered with transmissions from competing equipment.

Long range communications

The 802.11n standard can provide for line-of-sight ranges measured in kilometers, with throughputs of up to 150 Mbps. That’s very useful when you need to cross a barrier like a river or a superhighway. But as the network edge continues to expand, there is an increasing need for wireless connections in areas where there is no Ethernet infrastructure and where even the newest and most advanced Wi-Fi equipment would have insufficient range.

Figure 3: Connecting it to your serial device gives the serial device its own Wi-Fi hopspot, allowing technicians to communicate via laptops, tablets, or even smartphones. Courtesy: B&B ElectronicsCellular M2M data networking can solve the problem. Like some of the industrial Wi-Fi routers, today’s cellular routers will often include support for serial devices. A model with I/ports, Ethernet ports, and Wi-Fi would let you connect a broad array of equipment to the Internet via the cellular telephone network while supporting the older serial protocols. Through Virtual Private Networking you can use the cellular networks as securely as if they were proprietary infrastructure.

And this is just the beginning. The buildout of the 4G LTE networks is nearing completion. Network designers will soon be able to combine 4G’s enormous bandwidth and low latency with enhanced Wi-Fi to give networks incredible wireless capabilities. And there will be no need to abandon your existing equipment or wired infrastructure. Wired networks aren’t going to go away—they’re only going to get better. 

Mike Fahrion is director of product management at B&B Electronics 

More on wireless Ethernet:

Webcast: Industrial Ethernet, Part 1: Technologies. Archived version of this new Webcast now available on demand.

Video and article: PINA General Assembly looks ahead to growing industrial Ethernet deployments

E-Guide: Industrial Ethernet Best Practices

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Pipe fabrication and IIoT; 2017 Product of the Year finalists
The future of electrical safety; Four keys to RPM success; Picking the right weld fume option
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Control room technology innovation; Practical approaches to corrosion protection; Pipeline regulator revises quality programs
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Power system design for high-performance buildings; mitigating arc flash hazards
VFDs improving motion control applications; Powering automation and IIoT wirelessly; Connecting the dots
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me