Selecting a critical power monitoring and control technology



A BMS controls, monitors, optimizes, and reports on mechanical and electrical equipment such as air handling and cooling, lighting, power, fire, and security systems. BMS comprises software and hardware similar to that of SCADA. Software can be either proprietary, using protocols such as C-bus or Profibus, or open architecture that integrates Internet protocols and open standards such as XML, BACnet, LonWorks, and Modbus. Basic controls include manual switching, time clocks, or temperature switches that provide the on and off signals for enabling pumps, fans, or valves. 

Unlike other monitoring and controls systems, BMS enables two-way communication between building and property managers and their employees, tenants, or residents. This two-way communication feature is a valued capability for hospitals and office buildings because both types of facilities must maintain a comfortable environment, and in the process, save energy. Systems linked to a BMS typically represent 70% of a building's energy usage, including lighting. The BMS also track and schedule building maintenance. For example, the Bryan Medical Center East Campus in Lincoln, Neb., uses a BMS to maintain temperature and other environmental conditions for patients, visitors, and staff. 

A BMS can also play a role in protecting the critical power system. Geisinger Medical Center in Danville, Pa., monitors crucial power generators through both its BMS and its security sys­tem. “We are monitoring emer­gency power at both locations 24 hr daily,” said Al Neuner, Geisinger's vice president of facilities operations. “So, if one misses the alarm, the other location will catch it before we experience power problems.”

However, some say the functionality offered by a legacy BMS does not include the software tools needed to manage mission critical operations and processes. More than basic alarm and control notification are required. In addition, a BMS may not distinguish between critical and noncritical monitoring. The same technology manages temperatures of offices as well as data center hot aisles. 

Also, data transfer between critical power equipment occurs at speeds and bandwidths that could incapacitate most BMSs. Power quality data, such as waveform capture and transient har­monic displays, are cases in point. 

A BMS needs to be sophisticated enough to import crucial operational data from power controls. “The building automation system should allow a one-line diagram of the emergency backup power system,” said Robert McCarthy, senior associate with Environmental Systems Design. 


Technology research firm Gartner defines data center infrastructure management (DCIM) as "tools that monitor, measure, manage, and/or control data center use and energy consumption of all IT-related equipment (such as servers, storage, and network switches), and facilities infrastructure components (such as power distribution units and computer room air conditioners)." Said another way, it manages energy, assets, availability, risk, services, the supply chain, and IT automation by acquiring data using simple network management protocol, BACnet, or Modbus. 

As the relatively new monitoring and control technology continues evolving, it seems the larger the data center, the greater the need for DCIM. Well-known Internet service providers, search engine entities, and upcoming enterprise computing centers have particular need for the specialized capabilities of DCIMs. As a system, DCIM can encompass specialized 3-D visualization software, hardware, and sensors to monitor and control all IT and facility infrastructure equipment in real time. It automates three primary functions: data collection, infrastructure modeling, and analytical reporting.

The primary DCIM drivers are:

  • Greater power and heat densities
  • Growing virtualization and cloud computing
  • Increasing dependence on critical IT systems
  • Increasing demand for energy efficiency
  • Pursuit of green IT initiatives. 

At its best, DCIM produces improved uptime, efficient capacity planning and management, valuable business analytics, and deeper process and change management. However, the relationship between IT and facility infrastructure management, and the equipment they manage, must continue evolving to realize its promise. 

As with BMS, DCIM systems need to be sophisticated enough to import crucial operational data from power controls to effectively monitor and control critical power systems. 

According to 451 Research, “DCIM systems today mostly look at the present status of the data center for the purpose of improving operational efficiency and availability. But data center managers must also look forward—some of their biggest challenges are in avoiding huge cost overruns by over-provisioning and avoiding becoming constrained operationally by a shortage of power, cooling, or space.” 


Compared to legacy SCADA and BMS, and emerging DCIM, monitoring and control capabilities of CPMSs are apples to their oranges. Rather than being all things to all infrastructure systems, CPMS monitoring and controls are dedicated to managing critical power generation and distribution. These high-end power controls are propri­etary or semiproprietary solutions, running on either a shared or a dedicated backbone. 

They typically work in tandem with a SCADA, BMS, or DCIM, providing the needed sophistication, speed, and analytics specific to power generation and distribution. Bryan Medical Center depends on the seamless exchange of information between its CPMS and BMS. 

Figure 2: Sophisticated high-speed power controls can provide a significant amount of electrical system data and share them with other devices without disrupting other facility functions. Courtesy: ASCO Power TechnologiesCPMSs typically oversee gensets, circuit breakers, transfer switches, bus bar, paralleling control switchgear, UPSs, and other critical power distribution equipment. They watch normal and emergency voltages and frequency, and indicate transfer switch position, source availability, normal and emergency voltage and frequency, current, power, and power factor. They also display transfer switch event logs, time-delay settings, rating, and identification. They facilitate critical power system load management, bus bar optimization, testing, maintenance, reporting, trending, and analytics. They ensure power reliability during surges, sags, and outages. 

CPMS reporting capabilities help health care facilities comply with NFPA 70, NFPA 99, and NFPA 110 requirements for hospitals, as well as joint commission reporting requirements for maintaining accreditation. A dedicated and fully in­tegrated power monitoring system helps data centers and telecommunications sites satisfy National Electrical Code requirements and EN50160 Power Quality Compliance. 

Sophisticated power controls operate at extremely high speed (in milliseconds) and cache or share voluminous data from one device to the next without disrupting other building functions (see Figure 2).

“When you are doing forensics, you need fast and accurate time marks to track down where things went wrong,” said Morris Toporek, senior vice president for Environmental Systems Design

Northwestern Memorial Hospital’s Prentice Women’s Hospital in Chicago accomplishes data transfer with a self-sustaining, isolated network that includes a self-healing Ethernet dual fiber optic ring. “Self-healing means that communication happens both ways on both rings,” said Junnaid Malik, electrical engineer with Cosentini Associates mission critical group. “One ring could be physically cut and the system could still communicate.” 

Figure 3: In addition to active power, voltage, and current, analytics can monitor power harmonics and high-speed transients, and can be used for power system trending and predicting growth. Courtesy: ASCO Power TechnologiesPower quality analysis is the leading edge of power control technology (see Figure 3). It is very different from traditional monitoring. Analytics look at power harmonics and high-speed transients, and can be used for trending and predicting growth. 

In terms of security, some CPMSs are protected with the same 128-bit encryption technology used by NASA. 

Deciding which of these monitoring and control technologies is optimal depends on the application for which it is intended. The decision should be based on the importance of power reliability for a given set of operations or processes. If reliable power isn't absolutely critical, a SCADA system or BMS might be appropriate. If a holistic view of a data center's IT and facility infrastructure is a high priority, DCIM might be the logical choice. However, when the stakes are high for maintaining critical power, consider the specialized capabilities of CPMS monitoring and control that can also work alongside the other monitoring and control technologies.

Bhavesh Patel is director of marketing and customer support at ASCO Power Technologies, a business unit of Emerson Network Power. He is an accomplished public speaker with expertise in power system markets and has delivered presentations at NFMT, PowerGen, and ASHE. He has written many articles about power reliability and quality, and has hosted roundtable discussions of industry stakeholders to continue surfacing issues that help to improve power reliability.

<< First < Previous Page 1 Page 2 Next > Last >>

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Pipe fabrication and IIoT; 2017 Product of the Year finalists
The future of electrical safety; Four keys to RPM success; Picking the right weld fume option
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Control room technology innovation; Practical approaches to corrosion protection; Pipeline regulator revises quality programs
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Power system design for high-performance buildings; mitigating arc flash hazards
VFDs improving motion control applications; Powering automation and IIoT wirelessly; Connecting the dots
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me