Lessons, opportunities from NASA

Think Again: Learn how to avoid failures and innovate, according to NASA experts involved in the Space Shuttle program and the in-progress Mars Curiosity robotic mission.


A career as a NASA astronaut supplied Mike Mullane with plenty of life lessons to pass along in his books and speaking engagements. Courtesy: CFE Media image at the RSTechED conference by Rockwell AutomationNASA, the same organization that ignored engineering-based predictions of the Space Shuttle Challenger explosion, also designed, launched, and landed one of the most famous robots, the Mars Curiosity Rover. Automation and controls engineers can learn from NASA tragedies and successes, according to speakers at two June technology conferences.

Mike Mullane, retired USAF officer and NASA astronaut, provided lessons related to unheeded warnings about a shuttle failure prior to the Challenger explosion. “Normalization of deviance” led to the disaster and should not be repeated in any high-performing organization or personally, he suggested. Mullane spoke at the RSTechED conference by Rockwell Automation, in San Diego.

Doug McCuistion, director, NASA Mars Exploration Program (ret.), provided details related to launching a successful new robotic platform, the Mars Curiosity Rover. While the rover can be remote controlled, wireless signals take at least 7 minutes each way, so most decisions about landing vectors were automated. The all-new landing platform design essentially is a flying robot. McCuistion spoke at the Siemens Summit in New Orleans.

Joyful fear

Mullane noted daily indignities that accompany the boundlessly joyful, fear-for-your-life experience of space flight, including 5 hours of diaper use required for launch.

After Sputnik, the world’s first satellite launched by the Russians on Oct. 4, 1957, Mullane did a 1960 school science report. At 14 years of age, he wrote, “Someday, I also plan to participate in this great undertaking.” Homemade model rockets, essentially pipe bombs with fins [not recommended, he said], were part of his long journey to NASA-powered space flight.

Since he didn’t have genius or athletic prowess, he said he learned early about courageous self-leadership, how to be self-challenged, and a fierce tenacity in pursuit of goals. “We need to be motivating ourselves and our teams out of comfort zones.”

Mullane’s dad, a WWII aviator, was crippled with polio at 33, with six children to raise. “My parents were laser-focused on the goal.” They had to be.

NASA had a similar laser focus with the Apollo program, then lost and had to regain that vision.

Predictable surprise

Mike Mullane, retired USAF officer and NASA astronaut, provided lessons related to unheeded warnings about a shuttle failure prior to the Challenger explosion. He inspired those attending the RSTechED conference by Rockwell Automation, in San Diego, JuneThe explosion of the Shuttle Challenger on Jan. 28, 1986, was no accident, Mullane said, but what he called a “predictable surprise,” foretold by written documents warning of pending O-ring failure on the solid-rocket boosters. Burning of the O-rings was a “criticality 1” incident, which should have grounded the fleet, Mullane said. On the second flight, fire touched and damaged the O-rings. After tests, new data, more tests, and “tinkering,” tolerance was established for something that was previously defined as intolerable, he said.

“Why do bad things happen to people and teams with stellar histories? They fall victim to normalization of deviance. Usually first time, nothing happens. Then those involved start believing they always will get away with it. Deviance becomes the norm.”

NASA, with “crushing budget and schedule pressures,” aimed to deliver 26 shuttle flights a year, as promised to Congress. NASA also missed red flags, blinded and deafened by years of successes, he said. Among words delivered from a contractor prior to the disaster: “If we do not take immediate action, then we stand in jeopardy of losing of a flight, a crew, and all the launch pad facilities. Your support in this urgent matter is requested.”

Seven perished, no escape

The Challenger STS-51 crew of seven perished after the rocket breach, 73 seconds into flight; four were Mullane’s classmates. Three prior NASA rockets had human escape systems. The shuttle had none at that point.

Mullane paused, obviously still affected by the tragedy.

“The personal success lesson is that you are vulnerable. Thirteen years separated Apollo success with Challenger disaster,” with many of the same personnel and same teams involved, from the same organization.

Tenacity, questions

Adversity can be overcome. As a weapon-system operator in the USAF, Mullane admitted to vomiting during his first 50 missions. Tenacity kept him at it. On an early flight, he did not discuss concerns with the pilot that might have avoided a near deadly crash of a multimillion-dollar jet, because he thought the very experienced pilot knew better. Questioning status quo is critical, he said. At least one post-Challenger Space Shuttle design safety modification derived from an unexpected observer’s suggestion.

“Most of us are ordinary, but the ordinary can do the extraordinary when they move the bar out and keep that laser focus,” Mullane said.

“Success isn’t a final destination; it is a life journey.”

Robotic spacecraft, rover

Doug McCuistion, director, NASA Mars Exploration Program (ret.), provided details and advice related to launching a successful new robotic platform, the Mars Curiosity Rover, at the 2013 Siemens Summit in New Orleans. Courtesy: CFE MediaMcCuistion, sporting a Warner Bros. Marvin the Martian tie for his presentation, described the daunting challenges that the Mars Exploration Program presented. A strategically-defined “project-by-project” approach was used to achieve one the most monumental space exploration feats of the century. The journey accomplishments included disappointments, the application of groundbreaking technologies, and collaborative processes used for the exploration program.

16 out of 40

Challenge was to land a rover about three times as large and six times the mass as the prior generation, through an atmosphere that was too thin to adequately slow the craft, and too thick to avoid heat shielding. The engineering and rocket science involved isn’t easy. Of 40 attempted Mars missions globally, only 16 have succeeded to date.

Because of the weight, 1 metric ton, the size of compact car, a new landing system was required. The craft was too heavy to bounce inside a landing ball as a prior generation of lander, parachutes alone couldn’t slow it enough, and supersonic retrorockets haven’t been invented yet to compensate for the atmosphere on Mars.

Further, decisions needed to be made autonomously in real time since dust and wind conditions vary enough to cause a crash in a lander with pre-set instructions and without embedded intelligence. A minimum 14-minute communication delay makes remote-controlled landing impossible. The robotic craft optimized trajectory and number of S-turns required up to three. It did two, McCuistion said.

7 minutes of terror

A half-scale Siemens-owned model of Mars Curiosity Rover was available at Siemens Summit in June 2013. Siemens PLM software was used for design and testing. Courtesy: CFE MediaHeat shields, a parachute, and rocket-based sky-crane design allowed safe-speed lowering and landing of the rover from the descent stage. NASA and engineers and space fans held their collective breaths (so to speak) for 7 minutes of terror on Aug. 5, 2012, until they learned that the rover performed as designed and landed safely, within 250 m of the predicted location. (In 1976, the landing target for a much smaller craft was 174 x 62 mi.)

After a 254-day journey of 352 million miles, Rover Curiosity is now performing the planned roving lab experiments onboard for a design life of the next 2 years in the northern region in Gale Crater. (Curiosity is currently in Yellow Knife Bay, identified as a transition area between land and a prior river, at the base of a mountain where transitions between wind and water erosion are now clearly visible in the rock’s strata). 

On the next page: See photo that shows that water flowed on Mars; learn about the delay that avoided creating a crater with Curiosity; advocate for NASA sending humans going to Mars; link to related articles.

<< First < Previous Page 1 Page 2 Next > Last >>

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Pipe fabrication and IIoT; 2017 Product of the Year finalists
The future of electrical safety; Four keys to RPM success; Picking the right weld fume option
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Control room technology innovation; Practical approaches to corrosion protection; Pipeline regulator revises quality programs
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Power system design for high-performance buildings; mitigating arc flash hazards
VFDs improving motion control applications; Powering automation and IIoT wirelessly; Connecting the dots
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me