Inverter topologies: Voltage-source or current-source

In very basic terms, a variable-frequency drive (VFD) consists of three sections, moving from the drive’s input to output. A rectifier (or converter) changes ac input to dc, followed by a dc link that serves as an energy storage circuit, and then an inverter switches dc back to variable frequency ac output.

08/12/2010


In very basic terms, a variable-frequency drive (VFD) consists of three sections, moving from the drive’s input to output. A rectifier (or converter) changes ac input to dc, followed by a dc link that serves as an energy storage circuit, and then an inverter switches dc back to variable frequency ac output. Among different ways to categorize VFDs, configuration of the inverter section is an important one—namely, current-source inverter (CSI) and voltage-source inverter (VSI).

One distinguishing characteristic is the energy storage section between converter and inverter. VSI drives use capacitive energy storage, while CSI drives use inductive energy storage in their respective dc links for voltage and current. Another topology of current-source drives is the load-commutated inverter (LCI), which also employs a dc link inductor, but relies on commutation by the connected motor (or load) via switching direct current to the motor windings. This contrasts with a standard CSI drive where a line-commuted rectifier and self-commutated inverter are typical.

VSI drives work with both induction and synchronous motors, some CSI drives also work with induction and synchronous motors, but LCI drives are limited to only synchronous motors.

According to TM GE Automation Systems (TMEIC GE), voltage-source inverter is the only choice for drives above a certain power rating, compared to older technology current-source inverter drives. “In addition, any drive load that requires high torques and high response, such as a steel mill drive, cannot use current-source because of its much slower response due to the inductive source,” says Tim Russell, senior system engineer. “CSI drives are best suited for pumps and fans.”

www.tmeicge.com

LCI drives are intended for very large power output, and in that sense are an exception to the overall power limit of current sourcing. LCI drives are advantageous for ratings up to 50,000 hp (37,500 kW) or even higher and for control of synchronous motors, explains Rick Hoadley—principal consulting applications engineer, MV drives—at ABB Inc. “LCI drives operate at a slightly leading power factor, which allows devices in their inverter section to be load commutated,” he says. “This eliminates induction motors, which can’t run with a leading power factor.” LCI drives are available from ABB and Siemens.

www.abb.us/drives

www.siemens.com

Power-switching devices

Power-switching devices constitute another difference between CSI and VSI drives. Whether a power device is current- or voltage-switched determines its applicability to the type of drive. These power semiconductors range from the venerable silicon-controlled rectifier (SCR) and gate turn-off (GTO) thyristor to newer symmetrical gate-commutated thyristor (SGCT) and injection-enhanced gate transistor (IEGT).

TM GE Automation Systems provides the following attributes and trade-offs among some of these devices:

  • Current- switched devices—SGCT and integrated gate-commutated thyristors (IGCT)—require many more parts in firing/gate control than voltage-switched devices, such as IEGT and insulated-gate bipolar transistors (IGBT), which are available in LV and MV versions.

  • Voltage-switched devices—IGBT and IEGT—have much lower switching losses than current-switched devices.

  • Conduction losses are nearly equal for equivalent voltage- and current-rated devices: SGCT, IGCT vs. IGBT, IEGT.

  • Voltage-switched devices allow higher switching rates and provide better output waveforms.

Also read:

Why Choose Medium-Voltage Drives?

What is medium voltage? 

Transformerless medium-voltage drives perspective

Frank J. Bartos, P.E., is Control Engineering consulting editor. Reach him at braunbart@sbcglobal.net.



The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Pipe fabrication and IIoT; 2017 Product of the Year finalists
The future of electrical safety; Four keys to RPM success; Picking the right weld fume option
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Control room technology innovation; Practical approaches to corrosion protection; Pipeline regulator revises quality programs
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Power system design for high-performance buildings; mitigating arc flash hazards
VFDs improving motion control applications; Powering automation and IIoT wirelessly; Connecting the dots
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me