Four steps to successful energy management

Forging cross-functional teams, executing and publicizing small successful projects will earn support for comprehensive energy-management programs.


Trimming a factory's energy costs is a great way to boost a manufacturing company's bottom line. However, implementing a comprehensive energy management program can prove challenging for a number of reasons, not the least of which is the need for close collaboration among individuals-such as process engineers and facilities managers-who historically have not had to forge working relationships.

Following are four steps that are almost guaranteed to put a manufacturing company on the road to succeeding with adoption of a comprehensive energy management program.

1. Aim for low-hanging fruit and expect incremental progress.

By definition, a manufacturing company's primary business is not devising energy management strategies. This may sound obvious, but it is an important detail to remember because the attention span for green initiatives is very short-particularly among CEOs and CFOs, who must always be concerned about whether any activity ultimately will make-or cost-the company money.

With that in mind, champions of comprehensive energy management programs must look to start with projects that can be implemented quickly and show nearimmediate return on investment. That means looking for low-hanging fruit.

If, for example, your manufacturing floor sounds like a giant air leak during off-shifts, making changes to the compressed air system may be a good place to start an energy management program.

Compressed air flow meters are very affordable (~$500) and can be easily installed on a plant's distribution circuits to determine which production areas consume the most air. In many cases, area supervisors can drastically reduce wasted air by implementing simple procedural routines.

The payback on compressed air flow meters can be staggering, considering that operating a 200-hp compressor costs upwards of $50,000 per year in energy, according to U.S. Department of Energy studies.

Achieving a quick win of this type would be great for securing management support-and possibly funding- to implement additional projects.

2. Foster open communication between process engineers and facilities managers.

Comprehensive energy management within the industrial segment is best thought of in terms of optimizing the ratio between energy spent and productive output of the facility. Disconnecting all electricity from the plant is great for lowering the monthly bill, but obviously this would be counterproductive to the business.

High-cost equipment: Electricity accounts for more than 75 percent of the cost of operating an industrial air compressor. Source: U.S. Dept. of EnergyTo be comprehensive, an energy management plan requires collaboration between process engineering and facilities management, even though these two groups traditionally operate in separate places using different technologies. (Readers who have experienced the convergence of engineering and IT are correct to draw analogies.)

Fortunately, the technical barriers between process engineering and facilities management have shrunk drastically in the last few years thanks to standardization efforts driven by new communication protocols, such as BACnet and LON protocols.

Industrial controls and building controls are now more compatible than ever before, but the evolution is not complete. So it's important to have at least one individual on the energy management project team who understands both sides.

Hiring an independent advisor to help develop energy management solutions is a great way to fill this role. For best results, find an advisor or company that is technology independent so they will focus on fitting a solution to your company's needs rather than wedging your needs into their system.

3. Build on technologies you know.

A simple Google search for "energy management system" yields a plethora of meters, gadgets, and software packages claiming to be the answer for all conservation needs. While many of these offerings are compelling, this is definitely a situation in which the buyer must be extremely aware.

Buying a monolithic energy-management solution from a single vendor is likely to be a major, costly mistake. Building a solution around technologies the company is familiar with-and already owns-will be much more cost-effective, and have a much higher chance of success.

The rationalization for this is simple and draws upon many of the topics already discussed.

  • Funding for energy management projects is often fickle and requires quick, decisive return on investment (ROI). Large initial investments have been the nonstarter for many good plans.
  • Since energy projects are iterative and incremental, it's better to use familiar technologies, making it easier to implement projects internally.
  • Anything that is installed has to be maintained. Choosing familiar technologies allows existing staff to maintain the solution without expensive third-party support contracts.
  • Leveraging systems you know and already own is a much more viable option today because building controls and industrial controls are more interoperable than ever before thanks to standardization technologies, such as OPC, BACnet, and LON.

Following are two real-world examples that demonstrate this philosophy.

Company A operates a large manufacturing facility that is more than 30 years old. The manufacturing floor is standardized primarily on GE PLC and SCADA products that are supported by the company's internal engineering department. The plant's facility management is contracted to Johnson Controls, and a Metasys building management system is used to control the large HVAC and lighting infrastructure. This company needs to reduce electricity costs associated with welding and has chosen to construct an energy monitoring solution using a GE Cimplicity SCADA.

The initial system is focused on one comparatively new area of the plant that is already equipped with smart electrical meters. By keeping the initial system small, this company has demonstrated significant savings for that portion of the plant while also creating an energy-management system infrastructure that can be expanded to the rest of the facility.

Future projects will require significantly more capital investment for meters and installation; however, the tangible savings from phase 1 of the project make justification easy.

Company B is a biotechnology manufacturer whose product line is constantly evolving and whose facility is always in some state of construction. This company's production processes are managed with automation and control technology from Rockwell Automation that is compatible with open industry standards, and its engineering group is very skilled at adapting this technology to the company's ever-changing requirements.

However, the company's building management systems are based on proprietary technology that is largely un-maintainable by in-house personnel. As a result, it is virtually impossible for this company to implement a meaningful energy management program.

To correct this problem, the company has chosen to incrementally migrate from its proprietary building management system to more open technologies that can be supported by its internal group.

The new architecture uses Rockwell FTView SE as the new building management HMI. It communicates via BACnet to Tridium JACE controllers that can replace the proprietary processors.

This new architecture also allows the company to leverage its existing OSIsoft PI historian as the central archive for energy trending and analysis.

4. Publicize your success.

The final suggestion for a new energy management team is to always take credit for success. Publicizing the tangible results of energy projects is crucial to garnering support for future projects. 

Craig Lechene is co-founder and Managing Partner for RoviSys Building Technologies. He holds an Electro-Mechanical Engineering degree from Penn State University, a Master of Business degree from NC State University and has worked extensively in the life sciences and specialty chemical industries. His engineering experience includes process control and facility automation; both of which underpin RoviSys BT's specialization in building automation and energy management solutions for industrial accounts.

The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Pipe fabrication and IIoT; 2017 Product of the Year finalists
The future of electrical safety; Four keys to RPM success; Picking the right weld fume option
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Control room technology innovation; Practical approaches to corrosion protection; Pipeline regulator revises quality programs
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Power system design for high-performance buildings; mitigating arc flash hazards
VFDs improving motion control applications; Powering automation and IIoT wirelessly; Connecting the dots
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
This digital report explains how plant engineers and subject matter experts (SME) need support for time series data and its many challenges.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me