Sags, swells, and voltage deviation effects for troubleshooting motors
NEMA states speed and torque performance—as well as motor life—may be negatively affected by voltage variations.
Over-voltage events
However, as the motor approaches saturation, it becomes harder and harder to produce each incremental unit of magnetic flux. So, as it tries to increase magnetic field strength, the motor draws more current, causing higher core (I2R) losses (i.e., lower efficiency) and hotter motor temperatures.
Under-voltage events
On the other hand, interruptions, sags, and under-voltage deviations all occur when RMS voltages fall below 90% of nominal. Like over-voltage events, we use different terms to describe the event depending on its duration:
Interruptions are complete losses of voltage lasting less than two minutes; a loss of power lasting more than two minutes is considered an outage. Interruptions are further classified as instantaneous (less than 30 cycles), momentary (30 cycles to 2 seconds), and temporary (2 seconds to 2 minutes).
When voltage reduces and then return to normal voltage in less than one minute are called sags or dips.
Persistently low voltages that last more than one minute are called undervoltage deviations.
Whereas higher-than-nominal voltages push the motor towards saturation, lower-than-nominal voltages reduce the strength of the motor’s magnetic field and thus its ability to produce torque at rated speeds. Since torque and slip are proportionate to the square of voltage, a 10% reduction in voltage (e.g., operating a 460-V motor at 414 V) reduces torque by 19% (i.e., 90%2 = 81%); a 20% reduction in voltage restricts torque production to 64% of its full-potential potential [see Figure 2].
Operating below rated voltage may have minimal effect on motors running at less than 50% of its rated load and those starting up in low inertia applications (many soft starters work by ramping up voltage as the motor starts) — if anything, these motors may see improved efficiency through lower core losses. However, motors operating near rated load or starting high-inertial loads below rated voltage will experience higher current draws, lower torque, and longer start times — resulting in reduced starting ability, lower load capacity, more overheating, and a shorter motor life.
A 19.1% reduction in voltage means these blowers can only produce about 65% of nominal torque at rated speed. Since air flow, and the horsepower required to produce it, is proportionate to the cube of speed, that means there may not be enough air being produced. After checking air flow levels and the latest voltage measurements, the event appears to have been a sag—voltages and air flow have returned to normal levels. It’s good to make a note to keep an eye on the voltage because a longer or more severe power quality event may cause problems on a high-production day.
Nicole (Kaufman) Dyess has nearly 20 years’ experience optimizing the performance of motor-driven systems. She began her career at Advanced Energy testing thousands of motors, consulting with motor & appliance manufacturers on their designs, and documenting motor management best practices for the US Department of Energy. Subsequently, she managed statewide energy efficiency programs at the NC Department of Commerce and facilitated sustainability and process improvement projects for the City of Raleigh. Now, as Motors@Work’s director of client solutions, Nicole focuses on client implementations and user experience while providing technical support to the sales and development teams. Nicole holds master’s degrees in mechanical engineering and public administration. This article originally appeared on Motors@Work, a CFE Media content partner.
Original content can be found at www.motorsatwork.com.
Do you have experience and expertise with the topics mentioned in this content? You should consider contributing to our WTWH Media editorial team and getting the recognition you and your company deserve. Click here to start this process.