Knowledge is power management when it comes to standards

Differing IEC, ANSI requirements can impact compliance.
By Sherry Rollins, Schneider Electric March 22, 2018

According to the International Energy Agency’s New Policies Scenario, global energy needs are expected to expand by 30% by 2040. This is the equivalent of adding another China and India to today’s global demand. Of this, electricity will constitute 40% of energy consumption worldwide by 2040. At the same time, electricity prices are increasing. Per the U.S. Energy Information Administration, in the U.S. alone, the average retail price of electricity has risen about 1.5% per year between 2006 and 2016.

Because of this, there is an increasing worldwide demand for companies to leverage their global footprint more efficiently, improve processes, and reduce bottom lines. This is easier said than done. In the complex electrical engineering industry, systems standardization can lower costs and risk at the regional level, but create complications globally: each country has its own rules, regulations, and standards. As the use of equipment developed in different countries and manufactured by different vendors continues, it is critical to bridge the gap between differing standards to properly design and coordinate an electrical system.

Double standards

There are two major standards bodies: the American National Standards Institute (ANSI), which is the prevailing standards body in North America and some select other regions, and the International Electrotechnical Commission (IEC), which is used in much of the rest of the world. Each takes a different approach to developing and approving standards. These different tactics in the development stages drastically alter the design and testing of equipment. For instance, as a regional standard, ANSI follows the criteria for design, installation, and performance in alignment with the legal and liability environment in North America. As such, ANSI standards are tied closely in with building and safety codes, allowing for certain oversight and inspection to take place.

Since IEC standards are applicable worldwide, across many countries where local practices, codes, and legal environments vary drastically. The standards are performance rather than safety-based. There are, however, some regions that follow more strict requirements compared to the IEC standards, such as the United Kingdom.

The history

IEC was developed in June of 1906 as a global standards body for the world’s electrotechnical industries, including government, academia, end-users, and more. The standards were an answer to early 20th century electrical engineers’ needs for closer collaboration, embracing terminology, testing, safety, and internationally-agreed specifications. While the 19th century had been the era of electrotechnical innovation, the emphasis was now on consolidation and standardization. There was concern in the 20th century for electrical units and standards. More than a decade later, ANSI and the U.S. voluntary standards took shape in the form of a group meeting. Five organizations, the American Institute of Electrical Engineers, the American Society of Mechanical Engineers, the American Society of Civil Engineers, the American Institute of Mining and Metallurgical Engineers, and the American Society for Testing Materials joined together to establish an impartial national body to coordinate standards development. The U.S. Departments of War, Navy, and Commerce were invited to weigh in and join as founders. ANSI was originally named the American Engineering Standards Committee (AESC).

Initially, the AESC identified safety standards for the places people were spending most of their time. Many standards were aimed at preventing hazards in the household or workplace. The standards later expanded to include industry, government, and other sectors. With the expansion of the programs, ANSI’s identity also had grown and needed a new name. ANSI adopted its present name in 1969.

Usage: design vs. performance

When designing and specifying equipment, understanding the differences across these standards and within each region is critical, and there are several points to consider:

  • If applying equipment outside of its typical region-for instance, installing foreign-manufactured infrastructure within a U.S. building (a practice becoming increasingly common)-remember that the product may have been designed by different standards (unless it was specifically created for the U.S. market by an overseas vendor). As such, it may need to be substituted once you determine how it fits into the region you are in.
  • Within the ANSI, as a design-based standard, most manufacturers’ equipment will vary little from one another. This includes the specified thickness of sheet metal, paint color, barriers, and other features to ensure consistency.
  • On the other hand, IEC-standardized equipment must meet the same testing and performance requirements-no matter the design. For instance, the standard may require a specific degree of compartmentalization, but how this is achieved may vary by product or manufacturer. This means there is more freedom for those abiding by IEC standards in being innovative and creative in their design of equipment.
  • Electrical testing and ratings between IEC and ANSI are not necessarily the same or equivalent, and equipment may not pass respective tests. This is the case with temperature rise testing and enclosure ratings.

The key for global companies is to acknowledge and educate themselves on these standards to ensure equipment and systems comply. Understanding that each product may be slightly modified or have different available ratings based on the requirements and applicable standards for each region in which it is being applied is critical.

With global energy consumption skyrocketing, and companies fighting to keep up while keeping their bottom line down, it is more important than ever to have fully compliant equipment and systems. A full grasp on standards will provide knowledge and offer peace of mind.

Sherry Rollins is a Schneider Electric product manager.