Working with multivariable sensors

Many smart instrumentation devices can give you more than just one process variable.

10/01/2009


With growing sophistication, instrumentation devices can often provide more than one variable. These measurements are free in that they don’t require any additional sensors or process penetrations. All they require is a way for you to extract the information.

Multivariable approaches fall into three categories depending largely on the needs of the primary variable:

Corrective measurements —Most electronic sensors are influenced to some extent by more than one variable. For example, pressure sensors that use capacitive or strain gage technologies are affected by temperature. Consequently, the transmitter for such a device takes its own temperature measurement and uses that data to correct the primary reading. Since that measurement is in the transmitter, it is usually a simple matter to provide it to the control system.

The caution of using corrective measurement data is making sure you understand where it comes from. The temperature in this example will be taken where it is needed to correct the primary variable and may not reflect the process at all; it may only reflect the ambient temperature around the transmitter or electronic devices. Make sure you understand what it is before you use such data.

Multiple measurements —One of the most common flow measurement methods is using an orifice plate and differential pressure gage. There are many implementation variations, but the basic concept calculates flow based on pressure readings on both sides of a known obstruction. While the flow measurement only needs the differential pressure value, it isn’t difficult to extract line pressure measurements as well.

Calculated measurements —With the growing sophistication of transmitter electronics, adding calculated values to measured process variables has become far simpler. Coriolis flowmeters use this technique, and can calculate a range of variables from the three that are actually measured. Probably the most common example of this is setting your Coriolis device to read in gallons or liters per minute, since the device does not measure volume. It calculates volume based on measurements of mass flow and density. The transmitter can be setup to provide whichever of the available values you need most as the primary variable.

Extracting the extra data

Most devices are designed to provide the primary reading via an analog signal (4-20 mA) or a digital output. However, if more information is available, you have to find a way to get at it.

A few devices offer multiple (usually two) analog outputs. This approach certainly works, but requires a cable for each variable.

The most common method for sending the secondary variable is via a HART signal on top of the primary variable. If you use a HART interface or have HART I/O connections with your control system, you can capture the secondary measurements and use them in any way that’s valuable to the process. Complex devices, such as Coriolis flowmeters, allow you to choose which output comes over the analog signal and which others are overlaid. There are various types of HART reading devices. Some translate the secondary variables into appropriate engineering units for display. Others convert them into a second or third 4-20 mA signal for input into a DCS. There are even wireless approaches for capturing the information.

Fieldbus protocols make multiple variables very simple, if you use that networking approach and have suitable devices. Using fieldbus requires minimal setup since all variables, primary and secondary, will be available in the appropriate engineering units. Moreover, they can all be handled with the same importance.

Multivariable sensors can be very useful in the right contexts, but using them to your best advantage does require some homework. As your best first step, make sure you know what your process needs.


Author Information

Peter Welander is process industries editor. Reach him at PWelander@cfemedia.com .




No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.