Wireless technology tips from Control Engineering wireless webcast

More wireless technology tips and answers follow, resulting from feedback and questions submitted during a Control Engineering wireless webcast.

04/17/2013


A Yagi is the typical directional antenna. However, a parabolic antenna offers a tighter focus and less RF splash on the back side of the signal. Courtesy: Control Engineering Industrial Wireless Webcast, RoviSys Building TechnologiesEditor’s note: Control Engineering Wireless Webcast included Stephen Muenstermann, RoviSys Building Technologies, DC market manager, who presented his information as scheduled on March 14 (archived thereafter) despite suffering from flu. The article linked below in Adobe PDF format corresponds to the webcast presentation and provides additional information, with apologies from Muenstermann, who was severely under the weather for the webcast but went “on with the show” anyway. The linked PDF includes expanded presentation and application advice beneath each wireless webcast slide. Additionally, questions from webcast registrants and his answers to the questions are provided below.

Muenstermann offered the following answers to these questions to his portion of the Control Engineering wireless webcast.

Q&A Control Engineering wireless webcast

What are important performance metrics of wireless networks?

Top 5 performance metrics for wireless networks are radio signal strength indication, packet delivery, signal-to-noise ratio, receivers’ sensitivity, and line of sight. More information on each follows.

Wireless network metrics:

  • RSSI – Radio Signal Strength Indication – How strong is the receive signal
  • Packet Delivery – This indicates that that your message was sent and received. Typically greater than 50% is solid as the data is spread out across a spectrum.
  • SNR – Signal to Noise Ratio – which is the power ratio between the signal (meaningful information) and the background noise (unwanted signal)
  • Receivers’ sensitivity – a negative number -83dBm or greater is common. The more negative, the better sensitivity. Every time your receiver sensitivity drops by a factor of -3, it makes its ability to hear the incoming signal two times greater.
  • LOS (line of site) – what this means is the distance the two radio frequency (RF) transceivers can visibly see each other without obstruction. This is more important when trying to shoot through walls, trees, canyons of steel, etc.  
  • Diversity – In many of these technologies they have what they call multipathing. That is where the same signal bounces off a metal wall and comes in slightly later. Most systems have great diversity.
  • Determinism – Is the signal/network deterministic? This assures that you only get the data you want from each location.
  • Encryption and authentication – These are security measures. The first refers to the RF in the cloud, the second refers to how it becomes recognized into the network.

Get testimonials from clients using the technologies you are evaluating.

After you become more familiar with RF you will find that it will be easy to pick and choose. About 70% of the problems I have seen in the field have been related to mounting practices of the radios or antennas. Fortunately, this can be easily fixed by moving either item around.

What is an IT wireless network?

The real important part is the network side of it. That is what we are forming connections with wireless. We can create multiple layers with multiple stacks, while exchanging copious amounts of information. Information technology (IT) is used as we are exchanging, storing, manipulating, retrieving, and transmitting data.

One transmitter?

Would multiple signals go through a single transmitter?

All sensor networks have unique points. Most of the “standard” sensor networks are designed to send multiple signals through a single transmitter. This mesh style network is to prevent a single point of failure and to be self-healing. So the short answer is: yes!

Did anything ever come of OCARI wireless?

OCARI (Optimization of Communication for Ad hoc Reliable Industrial network) has not yet been used in the United States, so I am only familiar with it by what I have studied since the standard started in 2010.

By its design it looks fairly solid. It’s late to the party on standards and probably hasn’t grabbed acceptance yet. It was developed mostly by the French, so it may take a while for it to grab broader acceptance simply do to the momentum of the other standards and that they are not in the heart of heavy industrial applications. Only time will tell.

What about designing RF links for facilities overseas, what advice do you have?

Many of the challenges overseas are the limitations of what is accepted by the country in which you are working. The 2.4 GHz band has been the most widely accepted because of the microwave oven. A typical microwave oven leaks about 1 W or more of RF energy. As a result, most countries have opened that frequency spectrum to allow people the ability to cook food (and popcorn) quickly.

In doing so it opened up a vast number of technologies in that spectrum from cordless phones, Wi-Fi, to WirelessHART, ZigBee, ISA100.11a, and others.

So my advice is stick with 2.4 GHz but be cautious of your power output and check the local limits. The last network I did in Finland only allowed for 280 mW radio output and 350 mW of ERP (effective radiated power). In the USA we can generate as much as 1 W from the radio and 4 W of ERP. (The ERP is related to what the antenna adds to the radio output power.)

Testing for wireless network health

You mentioned many wireless technologies. Since we are dealing with heterogeneous sensor networks deployment, have you thought of how to address remote testing of the performance and health of these sensors and sensor networks?

This is where the standards protect you most. The IEEE is pretty hard on what they will accept. And most manufacturers do not want to create radio networks that will fail. So these technologies are built with what the call anti-collision technology. So if they sense someone climbing into their specific spot in the frequency, they will divert the other direction. They keep a list of multiple nodes in their memory so they can jump to another node if the signals become too interruptive.

In understanding how a radio works, look at a cell phone. We have millions of people talking here in Chicago simultaneously with little or no interruption. So what the radios do is locate the cell that has the cleanest signal-to-noise ratio and links with that cell. It avoids the other cells even though the signal strength may be better.

From a heterogeneous standpoint: That is why you want to manage those networks, antennas, RF propagation, radio placement, and power output.

The radio receiver would be the most likely to fail if blasted with RF over numerous years. But, then again, the cost of a radio replacement is very cheap.

See additional industrial wireless Q&A, next page.


<< First < Previous 1 2 3 Next > Last >>

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Your leaks start here: Take a disciplined approach with your hydraulic system; U.S. presence at Hannover Messe a rousing success
Hannover Messe 2016: Taking hold of the future - Partner Country status spotlights U.S. manufacturing; Honoring manufacturing excellence: The 2015 Product of the Year Winners
Inside IIoT: How technology, strategy can improve your operation; Dry media or web scrubber?; Six steps to design a PM program
Getting to the bottom of subsea repairs: Older pipelines need more attention, and operators need a repair strategy; OTC preview; Offshore production difficult - and crucial
Digital oilfields: Integrated HMI/SCADA systems enable smarter data acquisition; Real-world impact of simulation; Electric actuator technology prospers in production fields
Special report: U.S. natural gas; LNG transport technologies evolve to meet market demand; Understanding new methane regulations; Predictive maintenance for gas pipeline compressors
Warehouse winter comfort: The HTHV solution; Cooling with natural gas; Plastics industry booming
Managing automation upgrades, retrofits; Making technical, business sense; Ensuring network cyber security
Designing generator systems; Using online commissioning tools; Selective coordination best practices

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role that compressed air plays in manufacturing plants.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me