Wireless Monitoring of Rainforest Carbon Flux

Deep in the Costa Rican rainforest, researchers at the La Selva Biological Station are studying the exchange of CO2 between the atmosphere and dense plant life. This carbon flux study hopes to deepen understanding of the effects of greenhouse gasses on the environment. It has already resulted in the development of a new wireless sensor system that collects a variety of environmental measurement...


The wireless measurement technology deployed at the site is a networked infomechanical system (NIMS) based on NI's LabView software and CompactRio hardware.

Deep in the Costa Rican rainforest, researchers at the La Selva Biological Station are studying the exchange of CO 2 between the atmosphere and dense plant life. This carbon flux study hopes to deepen understanding of the effects of greenhouse gasses on the environment. It has already resulted in the development of a new wireless sensor system that collects a variety of environmental measurements, offers remote configuration capabilities, permits future expansion, and gives researchers around the world access to the measurements over the Internet.


The area under observation lies within a 3,900-acre tropical rainforest that averages more than 150 inches rainfall per year. Rain forests are carbon sinks, meaning they function in a manner that is opposite of a human lung: absorbing CO 2 and releasing oxygen into the environment. Carbon flux in rainforests is unusually complex because of the multilayered, diverse forest structure. Due to the difficulty in making measurements from multiple points on the forest floor and corresponding points in the canopy, a balanced budget for CO 2 fluxes has been historically difficult to measure.


The wireless measurement technology deployed at the site is a networked infomechanical system (NIMS) based on National Instruments LabView software and CompactRio hardware. The NIMS application was developed at the University of California Los Angeles (UCLA) by the Center for Embedded Networked Sensing (CENS). CENS develops embedded network sensing systems for critical scientific and social applications. It is a National Science Foundation (NSF) Science & Technology Center with an interdisciplinary and multi-institutional support structure that involves hundreds of faculty, engineers, graduate student researchers, and undergraduate students from partner institutions throughout California.


Getting the sensor where it’s needed

To increase the accuracy of the measurements being taken and to determine the effects of uneven carbon flux, we developed a mobile, wireless, aerially suspended robotic sensor system capable of measuring the transfer of carbon and other materials between the atmosphere and the Earth.


There are a wide range of measurements necessary to characterize the carbon flux including temperature, CO 2 , humidity, precise three-dimensional wind movement, heat flux, solar radiation, and photosynthetic active radiation (PAR). In the past, acquiring this breadth of measurements required the use of multiple data loggers from different vendors. CENS selected a modular approach using CompactRio to support a wide range of measurements using C Series modules from National Instruments and third-party vendors.


All of the environmental data necessary to conduct the carbon flux study is acquired through a modular approach. The wireless sensor systems are arranged at points on the forest floor and on aerially suspended robotic shuttles. This creates the first environmental monitoring system capable of taking measurements three dimensionally.


Three SensorKit systems ( www.sensorkit.net ) were deployed for the first phase of field trials. These are equipped with a variety of instruments, including tools for conducting basic meteorological measurements, sonic anemometers, infrared sensors, and radiometers.


In the initial test deployment, the wireless mobile sensing platforms traversed cables along three separate transects of the forest understory. During the deployment, the shuttle stopped at 1 m intervals along each transect for 30 seconds to allow sensors to equilibrate and take the required measurements. Each transect pass required 30 minutes and each transect ran for 24 hours.


By implementing the system using National Instruments’ modular hardware and software, we developed a flexible system with the additional communication and configuration advantages available with LabView software. CompactRio was selected as the central measurement collection unit and the Compact FieldPoint network interface with cFP-180x controllers were selected for distributed wireless measurements. A WAP-3701 wireless access point was chosen to transfer data between the distributed sensors, towers, and canopy floor.


Using LabView, we can supply measurements to local researchers in different data formats so they can perform post-analysis. We can configure measurement types, select channels, and even add scaling from a laptop connected to the system. Advanced analysis tools for real-time embedded processing can perform local mass flux analysis and post-processing for remote researchers.


LabView is also equipped with an HMI, so we can see real-time measurements. Prior to the development of this real-time analysis system, researchers typically spent a long time collecting large amounts of data on-site to bring the information back to their respective labs for further analysis.


In conjunction with the system designers at CENS, we plan to expand the system by adding high towers approximately 45 m above the forest floor with canopy walkways and increasing the total number of measurement systems in the upcoming months. Additionally, we plan to deliver remote data access through the Web to researchers and students at other locations. Using a Web browser and the Web capabilities of LabView, researchers everywhere will be able to access and download live and archived data for their own analysis.


Performing additional measurements using a three-dimensional measurement system will provide the data needed to validate our Gap Theory hypothesis that carbon transfer occurs unevenly across the rain forest. Gaps in the forest canopy are sources of carbon loss while the canopy is a source of carbon absorption. With this research, scientists will better understand the carbon absorption impact of rain forests.




Author Information

Dr. William Kaiser is in the Department of Electrical Engineering and Dr. Philip Rundel is in the Department of Ecology and Evolutionary Biology, both at UCLA.

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Sister act: Building on their father's legacy, a new generation moves Bales Metal Surface Solutions forward; Meet the 2015 Engineering Leaders Under 40
2015 Mid-Year Report: Manufacturing's newest tool: In a digital age, digits will play a key role in the plant of the future; Ethernet certification; Mitigate harmonics; World class maintenance
2015 Lubrication Guide: Green and gold in lubrication: Environmentally friendly fluids and sealing systems offer a new perspective
Drilling for Big Data: Managing the flow of information; Big data drilldown series: Challenge and opportunity; OT to IT: Creating a circle of improvement; Industry loses best workers, again
Pipeline vulnerabilities? Securing hydrocarbon transit; Predictive analytics hit the mainstream; Dirty pipelines decrease flow, production—pig your line; Ensuring pipeline physical and cyber security
Cyber security attack: The threat is real; Hacking O&G control systems: Understanding the cyber risk; The active cyber defense cycle
Designing positive-energy buildings; Ensuring power quality; Complying with NFPA 110; Minimizing arc flash hazards
Building high availability into industrial computers; Of key metrics and myth busting; The truth about five common VFD myths
New industrial buildings: Greener, cleaner, leaner; New building designs for industry; Take a new look at absorption cooling; Offshored jobs start to come back

Annual Salary Survey

After almost a decade of uncertainty, the confidence of plant floor managers is soaring. Even with a number of challenges and while implementing new technologies, there is a renewed sense of optimism among plant managers about their business and their future.

The respondents to the 2014 Plant Engineering Salary Survey come from throughout the U.S. and serve a variety of industries, but they are uniform in their optimism about manufacturing. This year’s survey found 79% consider manufacturing a secure career. That’s up from 75% in 2013 and significantly higher than the 63% figure when Plant Engineering first started asking that question a decade ago.

Read more: 2014 Salary Survey: Confidence rises amid the challenges

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.