Wireless energy harvesting: EnOcean Alliance publishes first specification

Releasing the industry's first open specification for self-powered, wireless sensors, EnOcean Alliance says it moved closer toward becoming an international standard. Beckhoff Automation, DisTech Controls, Texas Instruments, Wago, and Weiland are among users.

11/11/2009


Graham Martin, chairman and CEO of the EnOcean Alliance

Graham Martin, chairman and CEO of the EnOcean Alliance, shows several devices presently available, powered, according to the specification, by kinetic energy, solar energy, or thermal differences.

San Ramon, CA - A wireless energy harvesting standard moved closer to reality as the EnOcean Alliance, an international consortium of 120 companies serving building and industrial sectors, today announces the publication of its first global, open specification for energy-harvesting wireless sensors. EnOcean Equipment Profiles (EEP), alliance standardization guidelines, ensure interoperability among devices of various manufacturers. Jointly produced by EnOcean Alliance members, the public specification is accessible to everyone and presently contains 50 equipment profiles supporting the development of a variety of solutions, primarily for building automation, but also applicable for some industrial applications. Currently available EEPs include switches, remote controls, sensors, sensor combinations and data of every kind, the organization said in its Nov. 11 statement.

Jointly devised specification

Graham Martin, chairman and CEO of the EnOcean Alliance, said, "Publication of the first specification for EnOcean sensors is extremely important for the EnOcean Alliance because it ensures continuing seamless interoperability between EnOcean-enabled solutions across the spectrum of manufacturers. Moreover, it's the first step taken by the Alliance towards formal recognition as an international standard."

How EnOcean wireless, energy harvesting sensor technology works
Graham Martin, chairman and CEO of EnOcean Alliance (and formerly with ZigBee Alliance), spoke to Reed Business Information editors recently about wireless, energy harvesting, and sensor technologies. Martin noted:
- EnOcean technology, developed by Siemens research engineering, was spun off into EnOcean 2001, incorporated in German buildings in 2002, and added to about 10,000 building in Central Europe through 2006. Siemens remains minority stakeholder.
- In the last 2.5 years, a few hundred buildings installed the technology in North America, and the first major companies.
- EnOcean technology, each device with a 32-bit identifier, has extremely low risk of interference using the 315 / 868 MHz band. (Wireless LAN is 100 times as powerful as the ZigBee signal and can overwhelm that specification in some applications.)
- Turning a handle, clicking a switch, room lighting, or a 4-degree F difference powers the wireless transmitter, cited as having a 25-35 year life in most applications. Each switch can vary voltage at the receiver by holding down the button, serving as a dimmer in lighting applications. (A ZigBee module requires 30-100 times as much energy to transfer the signal.)
- Working range for the signal is about 1,000 ft without obstructions; brick or concrete will absorb about 80% of the signal.
- Without batteries that need replacing, one building complex saved $10,000 in batteries, 4,500 in light switches, 20 miles of cable per building, and 40% in light energy.
- EnOcean Alliance has one version of the specification (as opposed to multiple versions of ZigBee) with an interoperable specification that will be submitted to IEC for standardization.
- Energy savings in heating and cooling applications can exceed 20% when an open window, or an empty room turns down or shuts off heat or air conditioning.

Learn more through EnOcean Inc. or EnOcean Alliance. Beckhoff Automation, DisTech Controls, Texas Instruments, Wago, and Weiland are among users. Members number more than 130.

- Mark T. Hoske, editor in chief, Control Engineering www.controleng.com
Learn more at the industrial networks product channel .

 

The specification was devised by the EnOcean Alliance technical working group (TWG), which undertook the task of standardizing EnOcean technology on an international scale to ensure interoperability for many sensor-based building automation applications. EnOcean Alliance member companies currently offer more than 350 products based on EnOcean technology, all of which provide interoperability by virtue of their rigid adherence to firmly defined equipment profiles established in the EnOcean Alliance specification.

Non-proprietary communication : As a prerequisite for enabling equipment from different manufacturers to communicate and work together in building automation systems, interoperability demands adherence to clearly defined rules and standards. For example, all components must use the same data formats or protocols as set forth in the profile definitions. In a system with interoperable components that work according to a profile definition, it is possible to combine a receiver from manufacturer A with a sensor from manufacturer B and a sensor from manufacturer C performing the same function. In this way, non-proprietary, smart solutions for energy-efficient building automation are easily implemented throughout the enterprise.

First open specification for energy harvesting wireless sensors:At present the published specification contains 50 EEPs describing different switching functions, remote controls, sensors and combinations of sensors for temperature, brightness, motion and humidity. Additional profiles are also defined for switching actuators, dimmers and other devices, with new EEPs under development, including demand response, smart grid and smart ACK.

EnOcean Equipment Profiles define the functionality of EnOcean-enabled equipment independently of manufacturer. To ensure interoperability among EnOcean-based products, every manufacturer must provide a binding declaration prior to product introduction demonstrating that their solution meets the EnOcean Alliance specification though compliance with one or more EEP.

The new document is the first official specification to compile and publish the EEPs, paving the way for global proliferation of EnOcean technology driving the development and manufacture of new types of equipment. For users, the directive means that they have an even greater selection and more implementation possibilities as a result of a growing number of products and suppliers. While the specification is open, products designed using the specification require a small licensing fee. Martin made the announcement Nov. 11, at Greenbuild 2009, Phoenix, AZ, Nov. 10-12.

- See other Control Engineering EnOcean coverage .

- EnOcean Alliance competes with ZigBee Alliance .





No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
The true cost of lubrication: Three keys to consider when evaluating oils; Plant Engineering Lubrication Guide; 11 ways to protect bearing assets; Is lubrication part of your KPIs?
Contract maintenance: 5 ways to keep things humming while keeping an eye on costs; Pneumatic systems; Energy monitoring; The sixth 'S' is safety
Transport your data: Supply chain information critical to operational excellence; High-voltage faults; Portable cooling; Safety automation isn't automatic
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Synchronizing industrial Ethernet networks; Selecting protocol conversion gateways; Integrating HMIs with PLCs and PACs
Why manufacturers need to see energy in a different light: Current approaches to energy management yield quick savings, but leave plant managers searching for ways of improving on those early gains.

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.