Wireless Control and Wireless Safety!

Safe wireless (also known as safe cableless) is often applied to a machine using a “zone” concept to reduce the wireless communication distance. As wireless machine communications increase, application questions include the following.

12/21/2010


J.B. Titus, machine safety bloggerWireless technology and applications have grown rapidly over the past few years, and safe wireless communication has become part of the discussion. This is particularly important when you look back thirty years or so when communication and control bus technology was driving most of us crazy. We’ve been through the “proprietary” bus stage when suppliers found this approach superior to the “open” bus approach most large end users wanted for their applications. The technology, however, developed quite rapidly and today the distances are greater, communication can be very fast, reliability has increased dramatically, and it’s even applicable for security and safety applications. When compared to wire or cable communication and control wireless technology can be more flexible, less costly to install, and can offer operational savings.

Recently, we’ve seen wireless machine safety applications emerge and the machine safety application standards are re-writing their requirements to address the applications using this technology. In most cases so far it appears that the safe wireless communication is the same as on certified safety bus systems as you hear suppliers promoting their systems. Let’s take a moment and look under the hood.

Safe wireless (also known as safe cableless) is quite often applied to a given machine using a “zone” concept, which dramatically reduces the wireless communication distance. In one of Control Engineering’s recent most read articles, “How to choose wireless technology for industrial applications,” you can read about the importance of distance in wireless applications. It’s my opinion that one reason suppliers use a concept called zone control is to optimize the reliability of communication by creating very short distances between antennas. Yet, at the same time several more (and growing) unrelated wireless devices may also be within the wireless communication zone. These other devices may just be communicating to the general machine control architecture and have nothing to do with machine safety applications. Examples of these machine mounted devices could be temperature sensors, vibration sensors, switches, and pressure sensors…….to mention a few.

A lot of folks in industry, and me included, are wondering how industry applications standards are going to address this multiplicity of simple to complex devices.  The complex devices are usually something like a cableless operator panel used for machine set-up, clearing of faults, etc. as in the blog Cableless (Wireless) Operator Panel Applications.

Has anyone come across this emerging issue and can you provide some advice how measures that can be applied to prevent unintended communication problems and possible hazards?     

  INTEGRATED SAFETY COULD BE YOUR OPPORTUNITY – CONSIDER IT!

 

As a side note – The 2011 updated NFPA 79, Electrical Standard for Industrial Machinery, was previously expected for release this month. The 2011 NFPA 79 schedule was recently modified and the current expected release date is June, 2011.  

Submit your ideas, experiences, and challenges on this subject in the comments section below. Click on the following text if you don't see a comments box, then scroll down: Wireless Control and Wireless Safety!

Related articles:

How to choose wireless technology for industrial applications

Cableless (Wireless) Operator Panel Applications

Machine Safety – Cableless vs Wireless

Contact: www.jbtitus.com for “Solutions for Machine Safety”.



The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
Doubling down on digital manufacturing; Data driving predictive maintenance; Electric motors and generators; Rewarding operational improvement
2017 Lubrication Guide; Software tools; Microgrids and energy strategies; Use robots effectively
Prescriptive maintenance; Hannover Messe 2017 recap; Reduce welding errors
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Research team developing Tesla coil designs; Implementing wireless process sensing
Commissioning electrical systems; Designing emergency and standby generator systems; Paralleling switchgear generator systems
Natural gas engines; New applications for fuel cells; Large engines become more efficient; Extending boiler life

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me