WiFi instrument tag sends data to real-time data-brokerage platform

Data from instrumentation cloud device readable anywhere via Internet, offers multiple powering options, says Cores Electronic about its Tag4M sensor tag.


The Cores Electronic Tag4M board (above) can be powered by a battery or, as in this example, by a photovoltaic collector.A recent application of the Cores Electronic Tag4M sensor tag illustrates two aspects for using this credit-card sized device that delivers its data directly to a targeted web site through any commercially available access point or wireless router. The application proves the ability to run the low-power WiFi sensor information collector and transmitter from solar power, and it is delivering its readings to Pachube, which enables users to tag and share real time sensor data from objects, devices, and spaces around the world.


Cores Electronic, makers of the Tag4M device, says this is just one combination of data-collection hardware and remote analysis/display software that falls into the Instrumentation Cloud, which gets its name because users can read and control a sensor tag from anywhere in the world using any web-enabled device from a PC to an iPhone. In this demonstration, it is possible to read live data from the device, presently in Romania, at the Website www.pachube.com/feeds/7277.


Solar cell powered WiFi tag

Given the relatively high power requirement of a WiFi device, Cores says it has configured the Tag4M device such that it can be powered by a solar cell in continuous operation. The company advises that in creating a setup, you must ask questions regarding the solar cell’s ability to store energy during the day such that you can use it at night, its capability to supply enough current for Wi-Fi communication sessions. In addition, the solar-power scheme’s overall size, complexity and cost must be sufficiently low to make it cost competitive with batteries.

For this demonstration, Dr. S. Folea at the Automation Department at the Technical University of Cluj-Napoca, Romania, researched the best way to meet the requirements of a sensor tag located in non-optimum lighting conditions, but that must still provide data 24 hours a day. His design takes into consideration the power needed during the tag’s boot sequence, transmission period, measurement period, and receiving period. The peak current required at any time is 210 mA, and the unit operates from 2.0 to 3.7 Vdc. His final design powers the device from a solar cell connected to a capacitor array through a buck-boost converter, all augmented with a lithium-ion accumulator and a charger.

Currently, the setup provides real-time feeds of environmental data, including temperature, atmospheric pressure, and humidity, as well as key system parameters on the tag itself like solar cell voltage and sleep time through the Pachube web site. Cores also provides the ability to create proprietary web pages that accept and display sensor tag information. http://demo.tag4m.com

To send sensor data to Pachube, you must bundle it into a script written in EEML (extended environments markup language), a protocol for sharing sensor data between remote responsive environments, both physical and virtual. In this case, an application running on a local PC reads sensor data from Tag4M over a wireless link, bundles the data into an EEML script in a format Pachube understands and sends it using a TCP/IP Write command to the Internet and www.pachube.com. Finally, the Pachube web site captures the data and posts it on a feed that is visible to anyone who logs onto that particular web page.

Using RFID technology, Cores says the Tag4M device is a WiFi tag and contains everything needed for remote standalone operation. It starts with a WiFi radio that communicates with a nearby wireless access point, provides measurement circuitry including A/D and digital I/O, and its CPU controls the operations of those subsystems as well as executes user measurement and control scripts. In addition, extremely low power consumption means that, depending on the frequency of wake-up periods, a tag can operate on a small battery, another external supply, or solar power.

Cores spoke to Control Engineering at Sensors Expo and Embedded Systems Conference, co-located in Rosemont, June 8-10, 2010.

See other sensor and wireless products on the Sensors new product channel and on the industrial new product channel. Also see www.controleng.com/wireless.


- Edited by Peter Welander, Control Engineering, www.controleng.com

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Safety for 18 years, warehouse maintenance tips, Ethernet and the IIoT, GAMS 2016 recap
2016 Engineering Leaders Under 40; Future vision: Where is manufacturing headed?; Electrical distribution, redefined
Strategic outsourcing delivers efficiency; Sleeve bearing clearance; Causes of water hammer; Improve air quality; Maintenance safety; GAMS preview
SCADA at the junction, Managing risk through maintenance, Moving at the speed of data
Safety at every angle, Big Data's impact on operations, bridging the skills gap
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Applying network redundancy; Overcoming loop tuning challenges; PID control and networks
Driving motor efficiency; Preventing arc flash in mission critical facilities; Integrating alternative power and existing electrical systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role of plant safety and offers advice on best practices.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me