When failure is not an option, plants opt for predictive analytics

Failures have never been an option for power plants, refineries, oil and gas production facilities and other industries with critical equipment. While traditional condition monitoring solutions have reached their plateau, predictive analytic technologies go beyond to complex analytics for early warnings and insights into root causes of problems on critical equipment.


I recently heard a news commentator remark that failure is not an option for the incoming Obama administration. For power plants, refineries, oil and gas production and other industries with critical equipment, plant process and equipment failures have never been an option. That’s even truer today, when budgets are tight and money just isn’t available to fix equipment unnecessarily or to cover the exorbitant collateral expenses of catastrophic failure. And nobody can risk being down when demand requires one to be up and producing much-needed revenue.

Inadequately maintained plant equipment steadily siphons off profits and can quite suddenly become a costly equipment failure. Extending the useful life and optimal performance of plant equipment through proper maintenance practices is a sound and critical investment.

Relying on tradition

Many plant owners have traditionally relied on equipment condition monitoring (CM) solutions to minimize maintenance on key pieces of equipment by monitoring critical operating parameters. Data historians, digital control, vibration analysis and trending critical operating parameters are popular strategies. These systems compare pressure, temperature, flow, speed and vibration readings to predetermined upper and lower thresholds.

A blind test of historical data showed that predictive analytics could have identified damage to these turbine blades earlier, providing the facility additional time to resolve the issue.
The thresholds are set by plant operators to be wide enough to minimize unnecessary alarming, but narrow enough not to miss potential failures that may be catastrophic. If a reading is higher or lower than it should be, the system triggers an alarm, shuts down equipment or both. However, because they are based on generalized models and lack sensitivity, most of these alarms are false. And, CM systems cannot pick up subtle sensor deviations from normal that could signal an impending equipment failure; rather they “alarm” when damage is already done.

Conversely, companies that rely on strict routine maintenance schedules with no regard to actual equipment condition or performance spend scarce O&M dollars unnecessarily on preemptive repairs.

Predictive analysis differences

Optimally, the key to successful prevention is to predict developing equipment problems with accuracy and clear notification well in advance of failure. This requires an effective monitoring solution that recognizes every piece of equipment as unique, and works on all types of equipment to detect, diagnose and prioritize problems across a wide array of assets and failure modes that other methods cannot see. That is exactly what today’s predictive analytic solutions can do.

The amount of data being retrieved, recorded, trended and viewed in plants and monitoring centers has been growing exponentially. Given the variability of the data and the quantity of data being stored, the job of the analyst to make sense of the raw data is next to impossible. The all too common flaw with CM and other legacy monitoring systems is that operators find themselves data rich, but information poor.

Every company has a unique combination of people, equipment, processes and technology. The key to optimizing resources is to get the right information to the right people at the right time %%MDASSML%% to turn the data into intelligence. Predictive analytics %%MDASSML%% especially as delivered through new service-based business models %%MDASSML%% have a tremendous role to play in navigating through the brain drain. “Boots on the ground” in a plant can never be replaced, but plant workers’ focus can shift.

Predictive analytics could have warned the plant of this transition failure before it happened.

Beyond eyes, ears

Predictive analytic applications supplement the “eyes and ears” at the plant %%MDASSML%% capturing equipment knowledge that can help leaner, less-experienced staffs detect and diagnose equipment failures and prioritize their actions to eliminate them. Because the analytics are data-driven, the information and the decision-making are less subjective. With predictive analysis on the job 24/7, plant workers can spend their time solving problems %%MDASSML%% not looking for them.

For example, predictive analytic technology can monitor and analyze the performance and mechanical condition of equipment and can detect degradation in advance of the OEM monitoring systems, thus averting potential failures. These new predictive analytic solutions focus attention on abnormal equipment conditions, resulting in improved system performance, reliability and availability. Analysts do not need to be involved in direct data trending. The data is monitored by the software, and analysts only review the data when an exception is identified, giving ample time to respond to the changing condition.

By highlighting only signals that deviate from a pattern, monitoring is more efficient. If indicators show that a piece of equipment is continuing to operate normally, a scheduled overhaul can be delayed. Steady slow changes in readings enable plant engineers to detect impending failures early %%MDASSML%% before the equipment’s condition worsens to the point of needing urgent (more costly) attention. Early awareness of a problem makes it possible to schedule repairs during planned production downtime, and gives plant managers time to schedule technicians best qualified to do the work.

Predictive analytics fill an important industry void %%MDASSML%% complementing traditional condition-based monitoring systems, and going well beyond to complex analytics for early warning and insights into root causes of problems. Predictive analytics significantly reduce problems related to aging equipment, lean personnel and other constraints, while increasing production capacity and profitability.

Predictive analytic solutions complement existing CM and other legacy systems, and are scalable for individual plants to entire fleets. They monitor all critical equipment %%MDASSML%% rotating and non-rotating %%MDASSML%% for all industries with critical equipment. Companies successfully implementing a predictive analytics initiative can reasonably expect a return on investment in a matter of months.

This turbine generator bearing problem was identified early by predictive analytics, preventing further deterioration.

Author Information

Steve Tonissen is vice president of SmartSignal Corp.

No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
A cool solution: Collaboration, chemistry leads to foundry coat product development; See the 2015 Product of the Year Finalists
Raising the standard: What's new with NFPA 70E; A global view of manufacturing; Maintenance data; Fit bearings properly
Sister act: Building on their father's legacy, a new generation moves Bales Metal Surface Solutions forward; Meet the 2015 Engineering Leaders Under 40
Cyber security cost-efficient for industrial control systems; Extracting full value from operational data; Managing cyber security risks
Drilling for Big Data: Managing the flow of information; Big data drilldown series: Challenge and opportunity; OT to IT: Creating a circle of improvement; Industry loses best workers, again
Pipeline vulnerabilities? Securing hydrocarbon transit; Predictive analytics hit the mainstream; Dirty pipelines decrease flow, production—pig your line; Ensuring pipeline physical and cyber security
Upgrading secondary control systems; Keeping enclosures conditioned; Diagnostics increase equipment uptime; Mechatronics simplifies machine design
Designing positive-energy buildings; Ensuring power quality; Complying with NFPA 110; Minimizing arc flash hazards
Building high availability into industrial computers; Of key metrics and myth busting; The truth about five common VFD myths

Annual Salary Survey

After almost a decade of uncertainty, the confidence of plant floor managers is soaring. Even with a number of challenges and while implementing new technologies, there is a renewed sense of optimism among plant managers about their business and their future.

The respondents to the 2014 Plant Engineering Salary Survey come from throughout the U.S. and serve a variety of industries, but they are uniform in their optimism about manufacturing. This year’s survey found 79% consider manufacturing a secure career. That’s up from 75% in 2013 and significantly higher than the 63% figure when Plant Engineering first started asking that question a decade ago.

Read more: 2014 Salary Survey: Confidence rises amid the challenges

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.