What is asset management?

In a manufacturing context, particularly process manufacturing, how do we handle this interface between operations and maintenance?

04/29/2013


The term “asset management” has been broadly applied to cover many facets of a common question, which at its heart can be summarized as, “How do I eliminate, reduce, or at least manage my risk of equipment failure and the associated costs and losses of production?” There are many ways to answer that question, and they are typically lumped into this one category. Effective answers need to address two elements: technical solutions and work processes.

The technical side involves some kind of sensor that can measure whatever attribute is important to the asset in question. For example, on a large turbine or electric motor, there might be vibration sensors or bearing temperature devices to warn of approaching mechanical failure. The number of sensors is normally in proportion to the criticality of the specific asset and the variety of likely failure modes. In this particular example, if a failure of that turbine shuts down the whole operation, that asset is about as critical as they get. Choosing which sensors get installed is driven by expected failure modes, which is usually based on experience.

Some assets have sensors installed externally, or they might be an integral part of the device itself. The typical example of integral monitoring is a smart field device. The vast majority of process instrumentation and controller devices available today have some internal diagnostic capability. The nature and extent of these capabilities varies by the type of device, manufacturer, and communication protocol.

For example, a pneumatically operated smart control valve has the ability to monitor the air pressure required to move the stem. Let’s say over a two-year period, the air pressure required to close the valve is between 30 and 35 psi. But today it takes 50 psi to move the valve, so the controller can trigger an alarm warning that something has changed, which may be a sign of an approaching failure. Similarly, the transmitter of a flowmeter may report that its internal temperature is increasing due to a failing internal component. In either case, the warning comes before a failure, while there is still time for maintenance to select a course of action suitable for the situation. For a critical asset, the action may be immediate.

A smart device has to communicate this information to whatever control system needs to receive it. Since most companies don’t want to install any more wiring than absolutely necessary, most systems use a clever method to send it over the same wiring that is installed to carry the main process variable. HART communication superimposes a digital signal on top of the analog process variable. A fieldbus, such as Foundation fieldbus or Profibus, includes diagnostic information in the package of data that it sends out normally.

Using information profitably

The technical side of the equation works very well. The tougher element is how companies use that information, which brings us to the work processes part of the discussion.

Virtually any plant worth its salt will use some degree of asset management, at least on its most critical pieces of equipment. There will always be some core of instrumented assets that are critical and difficult to repair, even though it may be small. Those are usually selected based on experience after the previous plant manager was canned for losing too much production time.

Once you’re past this critical group, the picture generally deteriorates. Rather than choosing maintenance tasks based on immediate need as indicated by the diagnostic operations and indicators, equipment runs until failure, or maintenance is performed following a schedule. For some equipment, this is appropriate. There are noncritical devices that can run until they quit, and that’s fine. You don’t replace a light bulb until it burns out. There may be critical devices that can be serviced only when the plant is shut down, so every opportunity may be used.

An effective asset management program has two positive results: interruptions to production are minimized, which supports maximum possible production, and unnecessary maintenance operations are reduced. Maintenance people work only on the items that need work, and they are able to perform these operations at a time when production will be impacted the least. Creating work processes that support this approach are not easy, and this is where the system falls apart for most companies.

There are exceptions. Read the article in the HART Communication supplement with this issue about the MOL refinery in Hungary. By implementing an effective asset management program, this facility enjoys operating rates and profitability that are the envy of other companies in the same industry.

Peter Welander is a content manager for Control Engineering. Reach him at pwelander(at)cfemedia.com



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Leaders Under 40 program features outstanding young people who are making a difference in manufacturing. View the 2013 Leaders here.
The new control room: It's got all the bells and whistles - and alarms, too; Remote maintenance; Specifying VFDs
2014 forecast issue: To serve and to manufacture - Veterans will bring skill and discipline to the plant floor if we can find a way to get them there.
2013 Top Plant: Lincoln Electric Company, Cleveland, Ohio
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Bring focus to PLC programming: 5 things to avoid in putting your system together; Managing the DCS upgrade; PLM upgrade: a step-by-step approach
Balancing the bagging triangle; PID tuning improves process efficiency; Standardizing control room HMIs
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.