Video tutorial: Measuring liquid depth with a bubbler

Simple but effective liquid level measurement requires only a pressure gage and compressed air supply. This method is ideal for slurries and difficult debris-laden products.

01/08/2010


Bubbler video

Hands-on bubbler demonstration


Using pressure to measure liquid level is not complicated ( as shown in an earlier video tutorial ), but it does require that you make a penetration into the vessel somewhere near the bottom. If you need to make a level measurement from the top, you'll need to use a different method. One approach that is simple but very effective is a bubbler, sometimes called a dip tube. ( Watch the video .)

The concept is very straightforward: If you insert a tube into a vessel and pump compressed air into the tube, if there is enough pressure, it will push the liquid out of the tube and bubble out the bottom. It's just like blowing on a straw in a glass of water. The amount of pressure required to displace the liquid will vary according to the liquid depth: more liquid means more pressure. If you bring the air pressure up slowly and measure it as you go, the pressure will

Bubbler video

Pressure needed to displace liquid depends on depth


Bubbler full

Deeper liquid requires higher pressure

increase but then level when air comes out the bottom of the tube.

This pressure measurement allows you to calculate the distance from the bottom of the tube to the liquid level. If the pressure gage reads in inches of water column (as it does in the video), the task is really easy assuming the density of the liquid is the same as water. If your device reads in psi, 1 psi is equal to 27.7 inches of water so the math isn't very complicated. The density calculation is similarly straightforward.

One element that makes this approach so versatile is that fact that it uses access from the top, but measures from the bottom. This is in contrast to technologies like radar or magnetostrictive probes that actually measure the space above the liquid. If your dip tube is long enough to reach the bottom of the tank, you will get the true depth reading even if you don't know exactly where the bottom is. This makes it particularly useful for those occasional applications where you need to know the depth but you may not have all the dimensional data readily accessible.

This approach is very useful in situations where there is debris in the liquid or other solids that might interfere with floats or other moving parts. The tube tends to be self clearing since air keeps liquid out. Even if you only check intermittently, as long as the air pressure is high enough to displace any debris with the liquid, it will work properly.

At the same time, this approach does have some drawbacks:

• It does consume compressed air, but the volume can be very low (just enough to bubble out the bottom) and it can be shut off between intermittent readings.
• The tank needs to be vented. You could probably work out a differential pressure approach to measure a sealed tank, but the compressed air would simply accumulate in the tank and raise the pressure. Moreover, there would be a potential safety issue. If the pressure in the tank rose sufficiently, it could drive liquid back through the air line.
• The liquid must be able to tolerate having air (or whatever compressed gas you use) bubble through it and dissolve. It must also withstand possible contamination carried in the air stream. Products that deteriorate through oxidation would be a poor choice.

Using a bubbler is a very simple approach for continuous depth measurement that can be precise and is still inexpensive. The main cost is for a pressure gage and the compressed air itself. If you need a precise measurement and want the ability to interface with a larger control system, an electronic device will be appropriate. On the other hand, a simple analog gage can also do the job.

Read more about choosing level sensing technologies .

 

-Peter Welander, process industries editor, PWelander@cfemedia.com
Control Engineering Process Instrumentation & Sensors Monthly eNewsletter
Register here to select your choice of free eNewsletters .





No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Leaders Under 40 program features outstanding young people who are making a difference in manufacturing. View the 2013 Leaders here.
The new control room: It's got all the bells and whistles - and alarms, too; Remote maintenance; Specifying VFDs
2014 forecast issue: To serve and to manufacture - Veterans will bring skill and discipline to the plant floor if we can find a way to get them there.
2013 Top Plant: Lincoln Electric Company, Cleveland, Ohio
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Bring focus to PLC programming: 5 things to avoid in putting your system together; Managing the DCS upgrade; PLM upgrade: a step-by-step approach
Balancing the bagging triangle; PID tuning improves process efficiency; Standardizing control room HMIs
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.