Variable Frequency Drive Cuts Compressed Air Costs

Compressed air is a vital utility for most industrial businesses. It runs essential tools and machinery, and provides power to material handling systems and clean air to processes. New technology, concerns about steady pressure, maintenance, and that traditional nemesis, electrical power, make choosing the right compressor difficult.

11/01/2001


Compressed air is a vital utility for most industrial businesses. It runs essential tools and machinery, and provides power to material handling systems and clean air to processes. New technology, concerns about steady pressure, maintenance, and that traditional nemesis, electrical power, make choosing the right compressor difficult. Surprisingly, compressed air costs are most often considered in terms of equipment. In truth, energy consumption represents up to 70% of the total cost of producing compressed air. For continuous, full-load demand, a fixed-speed rotary screw compressor may be the best solution. In cases where base load varies with an additional load, consider supporting the base load with fixed-flow compressors and adding a variable speed drive (VSD) unit to carry the load variation.

Rotary screw air compressors, with fixed-speed drives, are limited in the number of stops and starts they can make in a given time frame. In applications with variable demand, rotary screws idle for long periods to avoid overheating caused by frequent restarts. Though it does not produce compressed air while idling, a fixed-speed compressor with modulation control still consumes about 70% of full-load electrical power %%MDASSML%% a substantial electrical cost with no benefit. A fixed-speed compressor operating in dual control mode (stop/start or online/offline) uses only 25% of full-load electrical power and offers some energy savings. VSD compressors are much better able to match variable demand requirements, virtually eliminating the need for idling. Kaeser Compressors, Inc., of Fredericksburg, VA, takes VSD technology to new levels of efficiency, flexibility, and noise control with a proprietary VSD known as Sigma Frequency Control (SFC). Kaeser SFC rotary screw compressors typically save 20% %%MDASSML%% 35% of electrical costs in variable-demand applications. Some manufacturers retrofit VSDs to existing compressors. Wayne Perry, Kaeser's Technical Director, thinks this is inadequate. "In rotary screw compressors, efficiency is based in part on airend speed. The efficiency range can be plotted on a bell curve. In an efficient range there is a flat top to the bell curve, but when you get out on the edge it falls off very rapidly. As you go too slow or too fast, you use more electricity and produce less air. If you just add a VSD onto an existing compressor design, you don't know whether that compressor design is in the middle of the bell curve or on the edge of the bell curve. I've worked with some companies that have compressors that are right out there on the edge of the bell curve, and if you slow them down at all they become very inefficient. Plus, in a retrofit scenario, the existing motor may not be designed to handle the conversion from fixed speed to variable speed." (See Fig.1) One danger in retrofitting with a VSD is harmonics backing into the plant electrical system, which may disrupt or even destroy other equipment. A completely integrated system, such as Kaeser's, isolates or eliminates all feedback so that no harmonic distortion goes into the plant's electrical grid.

Kaeser's design calls for a low-speed operating range %%MDASSML%% 450 rpm %%MDASSML%% 1,800 rpm. "This is where we produce optimum specific performance. To go slower would really not make sense because we lose efficiency. To go faster makes no sense because then you would have to have a larger drive," Perry explains.

An inherent advantage of VSD is the ability to start and stop as often as desired. Unlike fixed drives, VSD systems "soft start" and incur the lowest required inrush current. Whereas a 100-hp fixed drive is limited to two or three starts and stops per hour because required inrush current heats up the motor windings, the VSD has no limit. Power companies may penalize users for even one high-inrush spike on the demand chart.

SFC drive systems stabilize plant air pressure, thereby enhancing plant quality. "We have a customer who manufactures a precision automotive driveline system. The company was assembling finished products using pneumatic torque wrenches attached to a fixed-drive air system. Because of changing available air pressures, the torque values of the wrenches were fluctuating so much that it affected proper sealing," recalls Perry, who continues, "until they changed to a SFC system, they were forced to re-route their finished products back through a separate line to re-torque them."

Perry adds that fixed-drive rotary screw compressors have a 10%%MDASSML%%15 psig swing built into the controls. "When you put in a VSD compressor, you have only a 1%%MDASSML%%2 psig swing, which alone can make a substantial difference in product quality." Some VSD-equipped compressors fail to keep the power factor near unity. "Normally, when you unload an electric motor, the power factor gets worse and worse. The power company may penalize you for that. Based on how far off unity (1.0) the power factor is 0.8 or 0.7 %%MDASSML%% you get a power factor correction penalty every month on your electric bill. With our SFC we can maintain a power factor close to 1.0 throughout the entire speed range, so even as you unload you don't have this power factor going down, and you don't get penalized by the power company," Perry says. For more information, please contact Wayne Perry, Technical director for Kaeser Compressors, Inc. at 540-898-5500.





The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
Each year, a panel of Control Engineering and Plant Engineering editors and industry expert judges select the System Integrator of the Year Award winners in three categories.
A new approach to the Skills Gap; Community colleges may hold the key for manufacturing; 2017 Engineering Leaders Under 40
Doubling down on digital manufacturing; Data driving predictive maintenance; Electric motors and generators; Rewarding operational improvement
2017 Lubrication Guide; Software tools; Microgrids and energy strategies; Use robots effectively
The cloud, mobility, and remote operations; SCADA and contextual mobility; Custom UPS empowering a secure pipeline
Infrastructure for natural gas expansion; Artificial lift methods; Disruptive technology and fugitive gas emissions
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Power system design for high-performance buildings; mitigating arc flash hazards
Research team developing Tesla coil designs; Implementing wireless process sensing
Commissioning electrical systems; Designing emergency and standby generator systems; Paralleling switchgear generator systems

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
The maintenance journey has been a long, slow trek for most manufacturers and has gone from preventive maintenance to predictive maintenance.
Featured articles highlight technologies that enable the Industrial Internet of Things, IIoT-related products and strategies to get data more easily to the user.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me