Vacuum Circuit Breakers Become Prevalent

This "Cut the Copper" blog examines how the medium-voltage (MV) vacuum circuit breaker came into surface and its benefits over air-magnetic breakers.

05/02/2012


In the 1970s, GE dusted off a fault interruption technology initially developed in its labs 45 years earlier, introduced this new product, then placed it into commercial service—the medium-voltage (MV) vacuum circuit breaker. This breaker came onto the market with significant advantages over the medium voltage air-magnetic breakers it replaced (as well as MV oil circuit breakers prior to that).

The new technology reduced the size, weight, cost, complexity and maintenance requirements of previous technologies, while increasing the durability and longevity of the breaker, and the new breaker quickly gained wide acceptance in all markets. Other manufacturers quickly followed suit with new vacuum breaker designs of their own.

Side and rear views of a 38KV vacuum circuit breaker. Courtesy: Siemens, USAFault interruption was crisp and fast and precise, and after interrupting even a large fault within just microseconds after contact opening and the first current-zero on each pole, the contacts that had just interrupted the fault arc inside the vacuum bottles instantly healed themselves, by condensing and re-depositing the plasma of the arc back onto the contacts as fresh new, smooth metal.

This was fantastic for interrupting a large fault, but turned out to be not so good for switching on and off inductive loads (like MV transformers and motors) – as users soon learned. The main problem was that upon opening a breaker, the current that had been flowing through the inductive load stopped flowing instantly. The interruption of current flow went from SOMETHING to NOTHING in virtually zero time, and the energy trapped inside the inductor instantly displayed itself as a huge transient voltage across its outer winding terminals, and could also stressfully distribute the excessive voltages deep within the interior windings and winding layers of the transformer.

This was a far different current interruption than had been provided by air magnetic breakers, which had drawn the fault arc comparatively slowly through a long and large “arc quencher” path, causing a relatively lengthy interruption and arc cooling process. The abruptness of operation of the new vacuum breakers caught the industry off guard and unprepared for a new phenomenon - frequent catastrophic failures of downstream transformers, in ways that had almost never been experienced before. 



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
2016 Product of the Year; Diagnose bearing failures; Asset performance management; Testing dust collector performance measures
Safety for 18 years, warehouse maintenance tips, Ethernet and the IIoT, GAMS 2016 recap
2016 Engineering Leaders Under 40; Future vision: Where is manufacturing headed?; Electrical distribution, redefined
SCADA at the junction, Managing risk through maintenance, Moving at the speed of data
Safety at every angle, Big Data's impact on operations, bridging the skills gap
The digital oilfield: Utilizing Big Data can yield big savings; Virtualization a real solution; Tracking SIS performance
Applying network redundancy; Overcoming loop tuning challenges; PID control and networks
Driving motor efficiency; Preventing arc flash in mission critical facilities; Integrating alternative power and existing electrical systems
Package boilers; Natural gas infrared heating; Thermal treasure; Standby generation; Natural gas supports green efforts

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This article collection contains several articles on the vital role of plant safety and offers advice on best practices.
This article collection contains several articles on the Industrial Internet of Things (IIoT) and how it is transforming manufacturing.
This article collection contains several articles on strategic maintenance and understanding all the parts of your plant.
click me