Vacuum Circuit Breakers Become Prevalent

This "Cut the Copper" blog examines how the medium-voltage (MV) vacuum circuit breaker came into surface and its benefits over air-magnetic breakers.

05/02/2012


In the 1970s, GE dusted off a fault interruption technology initially developed in its labs 45 years earlier, introduced this new product, then placed it into commercial service—the medium-voltage (MV) vacuum circuit breaker. This breaker came onto the market with significant advantages over the medium voltage air-magnetic breakers it replaced (as well as MV oil circuit breakers prior to that).

The new technology reduced the size, weight, cost, complexity and maintenance requirements of previous technologies, while increasing the durability and longevity of the breaker, and the new breaker quickly gained wide acceptance in all markets. Other manufacturers quickly followed suit with new vacuum breaker designs of their own.

Side and rear views of a 38KV vacuum circuit breaker. Courtesy: Siemens, USAFault interruption was crisp and fast and precise, and after interrupting even a large fault within just microseconds after contact opening and the first current-zero on each pole, the contacts that had just interrupted the fault arc inside the vacuum bottles instantly healed themselves, by condensing and re-depositing the plasma of the arc back onto the contacts as fresh new, smooth metal.

This was fantastic for interrupting a large fault, but turned out to be not so good for switching on and off inductive loads (like MV transformers and motors) – as users soon learned. The main problem was that upon opening a breaker, the current that had been flowing through the inductive load stopped flowing instantly. The interruption of current flow went from SOMETHING to NOTHING in virtually zero time, and the energy trapped inside the inductor instantly displayed itself as a huge transient voltage across its outer winding terminals, and could also stressfully distribute the excessive voltages deep within the interior windings and winding layers of the transformer.

This was a far different current interruption than had been provided by air magnetic breakers, which had drawn the fault arc comparatively slowly through a long and large “arc quencher” path, causing a relatively lengthy interruption and arc cooling process. The abruptness of operation of the new vacuum breakers caught the industry off guard and unprepared for a new phenomenon - frequent catastrophic failures of downstream transformers, in ways that had almost never been experienced before. 



No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2015 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Engineering Leaders Under 40 program identifies and gives recognition to young engineers who...
Safer human-robot collaboration; 2017 Maintenance Survey; Digital Training; Converting your lighting system
IIoT grows up; Six ways to lower IIoT costs; Six mobile safety strategies; 2017 Salary Survey
2016 Top Plant; 2016 Best Practices on manufacturing progress, efficiency, safety
Mobility as the means to offshore innovation; Preventing another Deepwater Horizon; ROVs as subsea robots; SCADA and the radio spectrum
Future of oil and gas projects; Reservoir models; The importance of SCADA to oil and gas
Big Data and bigger solutions; Tablet technologies; SCADA developments
Automation modernization; Predictive analytics enable open connectivity; System integration success; Automation turns home brewer into brew house
Commissioning electrical systems; Designing emergency and standby generator systems; Paralleling switchgear generator systems
Natural gas for tomorrow's fleets; Colleges and universities moving to CHP; Power and steam and frozen foods

Annual Salary Survey

Before the calendar turned, 2016 already had the makings of a pivotal year for manufacturing, and for the world.

There were the big events for the year, including the United States as Partner Country at Hannover Messe in April and the 2016 International Manufacturing Technology Show in Chicago in September. There's also the matter of the U.S. presidential elections in November, which promise to shape policy in manufacturing for years to come.

But the year started with global economic turmoil, as a slowdown in Chinese manufacturing triggered a worldwide stock hiccup that sent values plummeting. The continued plunge in world oil prices has resulted in a slowdown in exploration and, by extension, the manufacture of exploration equipment.

Read more: 2015 Salary Survey

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.
This digital report will explore several aspects of how IIoT will transform manufacturing in the coming years.
Motion control advances and solutions can help with machine control, automated control on assembly lines, integration of robotics and automation, and machine safety.
Compressed air plays a vital role in most manufacturing plants, and availability of compressed air is crucial to a wide variety of operations.
Maintenance Manager; California Oils Corp.
Associate, Electrical Engineering; Wood Harbinger
Control Systems Engineer; Robert Bosch Corp.
click me