Understanding PID loop dynamics

When you watch your PID controller trying to move a process variable, do you understand the interaction of the three factors at each point on the curve?

01/28/2010


PID diagram

What's happening at each point on the curve?

You're sitting at your console in the control room, watching the graphic representation of a specific process variable controlled by a PID controller. Let's say it is a stable loop, and reasonably well tuned. That means it is following the setpoint closely enough to keep the process running on an even keel and your boss happy. For whatever reason, you need to make a setpoint change. You key in the new value and tell the control system to execute. The setpoint line on the screen moves to its new position. Then what?

Since your loop is running in automatic, the process variable should begin to move toward the new setpoint. As you watch the variable respond, do you ever stop to think about what's going on in the controller? What is actually causing the line to move? Which factor, or combination of factors, (proportional, integral, or derivative) is acting on the actuator at any given moment? Your ability to analyze the action at this level will help you determine what might be going wrong with your loops that do not perform as well.

Look at the diagram of a response to a set point change. What's happening at various points in the movement? For example, at point A , P is pushing hard since the variable is a long distance from the setpoint. I is beginning to push as well, but still isn't strong because little time has elapsed since the change occurred. D, assuming you're using it, is beginning to notice that the slope of the curve has taken a sudden turn and may be trying to counteract the P and I action.

With that in mind, ask yourself what's happening at point B ? Which factor is pushing hardest as the variable nears the setpoint? What makes the curve turn around at C ? How about D and E ?

Let's go a step farther. What if this response isn't suitable for your process? What might be causing the sizable amount of overshoot at point C ? If you were to deal with such a situation in real life, how might you reduce that so the variable would approach the setpoint but no go so far over? Should you change your P value? Should you change the I value?

Obviously this is only a "thought experiment," but the process of puzzling through the various possibilities can help expand your knowledge. To help get you started, here are three resources by Vance VanDoren available from our archive that will help explain how these elements work together and strengthen your understanding:

Understanding PID Control

Loop Tuning Fundamentals

The Three Faces of PID

 

-Peter Welander, process industries editor, PWelander@cfemedia.com
Control Engineering Process & Advanced Control Monthly eNewsletter
Register here to select your choice of free eNewsletters .





No comments
The Top Plant program honors outstanding manufacturing facilities in North America. View the 2013 Top Plant.
The Product of the Year program recognizes products newly released in the manufacturing industries.
The Leaders Under 40 program features outstanding young people who are making a difference in manufacturing. View the 2013 Leaders here.
The new control room: It's got all the bells and whistles - and alarms, too; Remote maintenance; Specifying VFDs
2014 forecast issue: To serve and to manufacture - Veterans will bring skill and discipline to the plant floor if we can find a way to get them there.
2013 Top Plant: Lincoln Electric Company, Cleveland, Ohio
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Plant Engineering case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Bring focus to PLC programming: 5 things to avoid in putting your system together; Managing the DCS upgrade; PLM upgrade: a step-by-step approach
Balancing the bagging triangle; PID tuning improves process efficiency; Standardizing control room HMIs
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software

Annual Salary Survey

Participate in the 2013 Salary Survey

In a year when manufacturing continued to lead the economic rebound, it makes sense that plant manager bonuses rebounded. Plant Engineering’s annual Salary Survey shows both wages and bonuses rose in 2012 after a retreat the year before.

Average salary across all job titles for plant floor management rose 3.5% to $95,446, and bonus compensation jumped to $15,162, a 4.2% increase from the 2010 level and double the 2011 total, which showed a sharp drop in bonus.

2012 Salary Survey Analysis

2012 Salary Survey Results

Maintenance and reliability tips and best practices from the maintenance and reliability coaches at Allied Reliability Group.
The One Voice for Manufacturing blog reports on federal public policy issues impacting the manufacturing sector. One Voice is a joint effort by the National Tooling and Machining...
The Society for Maintenance and Reliability Professionals an organization devoted...
Join this ongoing discussion of machine guarding topics, including solutions assessments, regulatory compliance, gap analysis...
IMS Research, recently acquired by IHS Inc., is a leading independent supplier of market research and consultancy to the global electronics industry.
Maintenance is not optional in manufacturing. It’s a profit center, driving productivity and uptime while reducing overall repair costs.
The Lachance on CMMS blog is about current maintenance topics. Blogger Paul Lachance is president and chief technology officer for Smartware Group.